Search results: Found 8

Listing 1 - 8 of 8
Sort by
An Optical Grooming Switch for High-Speed Traffic Aggregation in Time, Space and Wavelength

Author:
Book Series: Karlsruhe Series in Photonics & Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ) ISSN: 18651100 ISBN: 9783866445024 Year: Volume: 6 Pages: XII, 138 p. DOI: 10.5445/KSP/1000017092 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

In this book a novel optical switch is designed, developed, and tested. The switch integrates optical switching, transparent traffic aggregation/grooming, and optical regener-ation. Innovative switch subsystems are developed that enable these functionalities, including all-optical OTDM-to-WDM converters. High capacity ring interconnection between metro-core rings, carrying 130 Gbit/s OTDM traffic, and metro-access rings carring 43 Gbit/s WDM traffic is experimentally demonstrated. The developed switch features flexibility in bandwidth provisioning, scalability to higher traffic volumes, and backward compatibility with existing network implementations in a future-proof way.

Pattern effect mitigation techniques for all-optical wavelength converters based on semiconductor optical amplifiers

Author:
Book Series: Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ) ISSN: 18651100 ISBN: 9783866442764 Year: Volume: 3 Pages: VIII, 145 p. DOI: 10.5445/KSP/1000009234 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

All-optical wavelength converters (AOWC) are considered key to overcome wavelength blocking issues in next generation transparent networks. The focus of this book is on semiconductor optical amplifiers (SOA), a mature nonlinear element with very favorable nonlinear characteristics, and on a discussion of various filter configurations as well as on their adaptations for providing optimum performance matched to the nonlinear element working in high-speed all-optical wavelength converters.

Single-Laser Multi-Terabit/s Systems

Author:
Book Series: Karlsruhe Series in Photonics and Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ) ISSN: 18651100 ISBN: 9783866449916 Year: Volume: 9 Pages: XVIII, 184 p. DOI: 10.5445/KSP/1000033390 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments.

Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications

Authors: --- --- --- --- et al.
ISBN: 9783039212231 / 9783039212248 Year: Pages: 164 DOI: 10.3390/books978-3-03921-224-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Optics and Lights
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

It is well-known by now that the angular momentum carried by elementary particles can be categorized as spin angular momentum (SAM) and orbital angular momentum (OAM). In the early 1900s, Poynting recognized that a particle, such as a photon, can carry SAM, which has only two possible states, i.e., clockwise and anticlockwise circular polarization states. However, only fairly recently, in 1992, Allen et al. discovered that photons with helical phase fronts can carry OAM, which has infinite orthogonal states. In the past two decades, the OAM-carrying beam, due to its unique features, has gained increasing interest from many different research communities, including physics, chemistry, and engineering. Its twisted phase front and intensity distribution have enabled a variety of applications, such as micromanipulation, laser beam machining, nonlinear matter interactions, imaging, sensing, quantum cryptography and classical communications. This book aims to explore novel insights of OAM beams. It focuses on state-of-the-art advances in fundamental theories, devices and applications, as well as future perspectives of OAM beams.

Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

Authors: ---
ISBN: 9783039217922 / 9783039217939 Year: Pages: 150 DOI: 10.3390/books978-3-03921-793-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well.

Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications

Authors: ---
ISBN: 9783039218288 / 9783039218295 Year: Pages: 172 DOI: 10.3390/books978-3-03921-829-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 ?m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

The Future of Hyperspectral Imaging

Author:
ISBN: 9783039218226 / 9783039218233 Year: Pages: 220 DOI: 10.3390/books978-3-03921-823-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

Keywords

hyperspectral imaging --- Raman --- fluorescence --- sorting --- quality control --- black polymers --- PZT --- classification --- machine learning --- alternating direction method of multipliers --- Cramer–Rao lower bound --- forward observation model --- linear mixture model --- maximum likelihood --- multiband image fusion --- total variation --- fingerprints --- blood detection --- age determination --- hyperspectral imaging --- lossless compression --- multitemporal hyperspectral images --- information theoretic analysis --- predictive coding --- hyperspectral imaging --- plant phenotyping --- disease detection --- spectral tracking --- time series --- hyperspectral imaging --- principal component analysis --- oxygen saturation --- wound healing --- diabetic foot ulcer --- Raman spectroscopy --- chemical imaging --- compressive detection --- spatial light modulators (SLM) --- digital micromirror device (DMD) --- digital light processor (DLP) --- optimal binary filters --- Chemometrics --- multivariate data analysis --- compressive sensing --- hyperspectral imaging --- multiplexing system --- liquid crystal --- three-dimensional imaging --- integral imaging --- remote sensing --- point target detection --- CS-MUSI --- hyperspectral --- video --- imaging --- coastal dynamics --- moving vehicle imaging --- bi-directional reflectance distribution function (BRDF) --- hemispherical conical reflectance factor (HCRF) --- stereo imaging --- digital elevation model --- Virginia Coast Reserve Long Term Ecological Research (VCR LTER) --- Hyperspectral imaging --- painting samples --- retouching pigments --- watercolours --- multivariate analysis --- potatoes --- sprouting --- primordial leaf count --- hyperspectral imaging --- spectroscopy --- fusion --- wavelength selection --- PLSR --- interval partial least squares --- deep learning --- hyperspectral imaging --- neural networks --- machine learning --- image processing --- hyperspectral imaging --- medical imaging by HSI --- HSI for biology --- remote sensing --- hyperspectral microscopy --- fluorescence hyperspectral imaging --- Raman hyperspectral imaging --- infrared hyperspectral imaging --- statistical methods for HSI --- hyperspectral data mining and compression --- statistical methods for HSI --- hyperspectral data mining and compression

Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 / 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search