Search results: Found 4

Listing 1 - 4 of 4
Sort by
Pathophysiological Mechanisms of Sarcopenia in Aging and in Muscular Dystrophy: A Translational Approach

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196845 Year: Pages: 248 DOI: 10.3389/978-2-88919-684-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Loss of muscle mass and increased fibrosis characterize both sarcopenia of aging and muscular dystrophy. Research is increasingly showing that these two conditions also share several pathophysiological mechanisms, including mitochondrial dysfunction, increased apoptosis, abnormal modulation of autophagy, decline in satellite cells, increased generation of reactive oxygen species, and abnormal regulation of signaling and stress response pathways. This Research Topic will cover several mechanisms involved in aging and dystrophic sarcopenia and explore the therapeutic potential of various strategies for intervention.

Muscle-Tendon-Innervation Unit: Degeneration and Aging - Pathophysiological and Regeneration Mechanisms

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451036 Year: Pages: 104 DOI: 10.3389/978-2-88945-103-6 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Aging is characterized by progressive deterioration of walking ability. This function loss has multiple causes including central and peripheral nerve dysfunction, loss of muscle mass and strength, as well as joints and bone alterations. Muscle-tendon unit and its innervation has a pivotal role in motor function performance that can be disrupted by overuse degeneration and aging. Research has shown that overuse degeneration and aging also share some pathophysiological mechanisms including mitochondrial dysfunction, increased apoptosis, abnormal modulation of autophagy, decline in satellite cells, increased generation of reactive oxygen species, and modification of signalling and stress response pathways. This Research Topic is intended to bring together basic researchers and clinicians working in the area of neuroscience, aging, sarcopenia and orthopaedics in human and in animal models. The aim of this cross-fertilization is to accelerate our understanding of the mechanisms involved in aging and degeneration of the muscle-tendon unit and its innervation and to explore the therapeutic potential of pharmacological and physical therapy interventions.

Genome Editing in Neurosciences

Authors: --- ---
Book Series: Research and Perspectives in Neurosciences ISSN: 0945-6082 / 2196-3096 ISBN: 9783319601915 9783319601922 Year: Pages: 123 DOI: https://doi.org/10.1007/978-3-319-60192-2 Language: English
Publisher: Springer
Subject: Neurology --- Genetics
Added to DOAB on : 2017-11-24 13:07:59
License:

Loading...
Export citation

Choose an application

Abstract

Innovations in molecular biology are allowing neuroscientists to study the brain with unprecedented resolution, from the level of single molecules to integrated gene circuits. Chief among these innovations is the CRISPR-Cas genome editing technology, which has the precision and scalability to tackle the complexity of the brain. This Colloque Médecine et Recherche has brought together experts from around the world that are applying genome editing to address important challenges in neuroscience, including basic biology in model organisms that has the power to reveal systems-level insight into how the nervous system develops and functions as well as research focused on understanding and treating human neurological disorders.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 / 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search