Search results: Found 5

Listing 1 - 5 of 5
Sort by
Observing Geohazards from Space

Author:
ISBN: 9783038427759 9783038427766 Year: Pages: VIII, 244 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Geology --- Earth Sciences --- Physics (General)
Added to DOAB on : 2018-04-27 16:24:07
License:

Loading...
Export citation

Choose an application

Abstract

With a wide spectrum of imaging capabilities, Earth observation offers several opportunities for the geoscience community to map and monitor natural and human-induced Earth hazards from space. The objective of this book is to collect scientific contributions on the development, validation, and implementation of satellite data, processing methods, and applications for mapping and monitoring of geohazards such as slow moving landslides, ground subsidence and uplift, and active and abandoned mining-related ground movements.The book includes research papers published in the Special Issue "Observing Geohazards from Space" of Geosciences, which provides a number of novel case studies demonstrating how Earth observation and remote sensing data can be used to detect and delineate land instability and geological hazards in different environmental contexts and using a range of spatial resolutions and image processing methods.

Perspectives on European Earthquake Engineering and Seismology: Volume 1

Author:
Book Series: Geotechnical, Geological and Earthquake Engineering, Vol. 34 ISSN: 15736059 ISBN: 9783319071176 9783319071183 Year: Volume: 34 Pages: 650 DOI: 10.1007/978-3-319-07118-3 Language: English
Publisher: Springer
Subject: General and Civil Engineering --- Materials
Added to DOAB on : 2014-10-06 15:59:36
License:

Loading...
Export citation

Choose an application

Abstract

This book collects 5 keynote and 15 topic lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC).The book’s twenty state-of-the-art papers were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies and managing risk in seismic regions. The book also presents the Third Ambraseys Distinguished Award Lecture given by Prof. Robin Spence in honor of Prof. Nicholas N. Ambraseys.The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge content and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields.

Very High Resolution (VHR) Satellite Imagery: Processing and Applications

Authors: ---
ISBN: 9783039217564 / 9783039217571 Year: Pages: 262 DOI: 10.3390/books978-3-03921-757-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing.

Keywords

road extraction --- very high-resolution image --- fast marching method --- semiautomatic --- edge constraint --- beaver mimicry --- beaver dam analogue --- QuickBird --- riparian --- stream restoration --- Worldview --- benthic mapping --- seagrass --- airborne hypespectral imagery --- Worldview-2 --- atmospheric correction --- sunglint correction --- water column correction --- dimensionality reduction techniques --- SVM classification --- linear unmixing --- building detection --- built-up areas extraction --- local feature points --- saliency index --- morphological building index --- Deformable CNN --- Faster R-CNN --- data augmentation --- occluded object detection --- very high-resolution Pléiades imagery --- canopy height model --- acquisition geometry --- forested mountain --- accuracy assessment --- remote sensing imagery --- super-resolution --- ultra-dense connection --- feature distillation --- video satellite --- compensation unit --- urban water mapping --- water index --- shadow detection --- threshold stability --- agriculture parcel segmentation --- superpixels --- consensus --- texture analysis --- multi-resolution segmentation (MRS) --- greenhouse extraction --- over-segmentation index (OSI) --- under-segmentation index (USI) --- error index of total area (ETA) --- composite error index (CEI) --- GaoFen-2 (GF-2) --- synthetic aperture radar --- landslide monitoring --- sub-pixel offset tracking --- Slumgullion landslide --- natural hazards --- large displacements --- remote sensing --- scene classification --- CNN --- capsule --- PrimaryCaps --- CapsNet --- High-resolution satellite imagery --- submesoscale --- spiral eddy --- cyanobacteria --- surface convergence --- western Baltic Sea

Resilience and Sustainability of Civil Infrastructures under Extreme Loads

Authors: --- --- ---
ISBN: 9783039214013 / 9783039214020 Year: Pages: 408 DOI: 10.3390/books978-3-03921-402-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

There are many regions worldwide which are susceptible to extreme loads such as earthquakes. These can cause loss of life and adverse impacts on civil infrastructures, the environment, and communities. A series of methods and measures have been used to mitigate the effects of these extreme loads. The adopted approaches and methods must enable civil structures to be resilient and sustainable. Therefore, to reduce damage and downtime in addition to protecting life and promoting safety, new resilient structure technologies must be proposed and developed. This special issue book focuses on methods of enhancing the sustainability and resilience of civil infrastructures in the event of extreme loads (e.g., earthquakes). This book contributes proposals of and theoretical, numerical, and experimental research on new and resilient civil structures and their structural performance under extreme loading events. These works will certainly play a significant role in promoting the application of new recoverable structures. Moreover, this book also introduces some case studies discussing the implementation of low-damage structural systems in buildings as well as articles on the development of design philosophies and performance criteria for resilient buildings and new sustainable communities.

Keywords

corporation --- resilience --- disaster --- recovery --- Great East Japan Earthquake --- viscous damper --- hybrid damper --- seismic performance --- cyclic loading test --- silt --- subway induced vibration --- numerical simulations --- finite element --- infinite element boundary --- measurement --- substructure --- boundary technique --- inflection point --- hybrid simulation --- force-displacement control --- integration algorithm --- pseudodynamic test, earthquake --- nonlinearity --- model-based --- Brazier effect --- angle section --- Brazier flattening --- variational method --- numerical simulation --- beam --- reinforced concrete --- corrosion --- chloride ingress --- carbonation --- probabilistic --- sustainability prediction --- cold-formed steel structure --- cold-formed steel composite shear wall building --- mid-rise --- simplified modeling method --- seismic analysis --- shaking table test --- seismic damage --- simulation model --- system restoration --- water supply networks --- progressive collapse --- abnormal loads --- sudden column removal --- seismic connection detail --- energy-based approximate analysis --- structural robustness --- structural sensitivity --- mitigation --- shaking table test --- liquefaction --- settlement --- ground improvement --- resilience-based design --- dynamic structural analysis --- GM selection --- displacement response spectrum --- structural response estimates --- spectrum variance --- probabilistic framework --- reinforced concrete frames --- liquefaction --- response surface method --- artificial neural network --- Monte Carlo simulation --- optimized section --- precast slab --- concrete --- tapered cross section --- shear performance --- ground motion --- matching pursuit decomposition --- time-frequency energy distribution --- ratcheting effect --- nonlinear response --- flow --- analysis --- concrete --- girder --- damage --- NDE --- replaceable coupling beam --- beam --- shear wall --- cyclic reversal test --- seismic behavior --- settlement --- mined-out region --- railway construction --- dynamic model --- column-top isolation --- single-layer reticulated dome --- nonlinear time-history analysis --- damping effect --- hybrid simulation --- intermediate column --- subway station --- OpenFresco --- OpenSees --- resilience --- sustainability --- civil infrastructures --- extreme loads --- natural hazards --- earthquakes --- seismic performance --- energy dissipative devices

Flood Forecasting Using Machine Learning Methods

Authors: --- ---
ISBN: 9783038975489 Year: Pages: 376 DOI: 10.3390/books978-3-03897-549-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

data scarce basins --- runoff series --- data forward prediction --- ensemble empirical mode decomposition (EEMD) --- stopping criteria --- method of tracking energy differences (MTED) --- deep learning --- convolutional neural networks --- superpixel --- urban water bodies --- high-resolution remote-sensing images --- monthly streamflow forecasting --- artificial neural network --- ensemble technique --- phase space reconstruction --- empirical wavelet transform --- hybrid neural network --- flood forecasting --- self-organizing map --- bat algorithm --- particle swarm optimization --- flood routing --- Muskingum model --- machine learning methods --- St. Venant equations --- rating curve method --- nonlinear Muskingum model --- hydrograph predictions --- flood routing --- Muskingum model --- hydrologic models --- improved bat algorithm --- Wilson flood --- Karahan flood --- flood susceptibility modeling --- ANFIS --- cultural algorithm --- bees algorithm --- invasive weed optimization --- Haraz watershed --- ANN-based models --- flood inundation map --- self-organizing map (SOM) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- ensemble technique --- artificial neural networks --- uncertainty --- streamflow predictions --- sensitivity --- flood forecasting --- extreme learning machine (ELM) --- backtracking search optimization algorithm (BSA) --- the upper Yangtze River --- deep learning --- LSTM network --- water level forecast --- the Three Gorges Dam --- Dongting Lake --- Muskingum model --- wolf pack algorithm --- parameters --- optimization --- flood routing --- flash-flood --- precipitation-runoff --- forecasting --- lag analysis --- random forest --- machine learning --- flood prediction --- flood forecasting --- hydrologic model --- rainfall–runoff, hybrid & --- ensemble machine learning --- artificial neural network --- support vector machine --- natural hazards & --- disasters --- adaptive neuro-fuzzy inference system (ANFIS) --- decision tree --- survey --- classification and regression trees (CART), data science --- big data --- artificial intelligence --- soft computing --- extreme event management --- time series prediction --- LSTM --- rainfall-runoff --- flood events --- flood forecasting --- data assimilation --- particle filter algorithm --- micro-model --- Lower Yellow River --- ANN --- hydrometeorology --- flood forecasting --- real-time --- postprocessing --- machine learning --- early flood warning systems --- hydroinformatics --- database --- flood forecast --- Google Maps

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)

Springer (1)


License

CC by-nc-nd (4)

CC by-nc (1)


Language

eng (3)

english (2)


Year
From To Submit

2019 (3)

2018 (1)

2015 (1)

-->