Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and MixedInteger Programming to the most modern methods based on bioinspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.
Cable joint  internal defect  thermal probability density  power system optimization  optimal power flow  developed grew wolf optimizer  energy internet  prosumer  energy management  consensus  demand response  dayahead load forecasting  modular predictor  feature selection  microphasor measurement unit  mutual information theory  stochastic state estimation  twopoint estimation method  JAYA algorithm  multipopulation method (MP)  chaos optimization algorithm (COA)  economic load dispatch problem (ELD)  optimization methods  constrained parameter estimation  extended Kalman filter  power systems  C&I particle swarm optimization  ringdown detection  optimal reactive power dispatch  loss minimization  voltage deviation  hybrid method  tabu search  particle swarm optimization  artificial lighting  simulation  calibration  radiance  GenOpt  street light points  DC optimal power flow  power transfer distribution factors  generalized generation distribution factors  unit commitment  adaptive consensus algorithm  distributed heatelectricity energy management  eight searching subregions  islanded microgrid  dragonfly algorithm  metaheuristic  optimal power flow  particle swarm optimization  CCHP system  energy storage  offdesign performance  dynamic solving framework  battery energy storage system  micro grid  MILP  PCS efficiency  piecewise linear techniques  renewable energy sources  optimal operation  UC  demand bidding  demand response  genetic algorithm  load curtailment  optimization  hybrid renewable energy system  pumpedhydro energy storage  offgrid  optimization  HOMER software  rural electrification  subSaharan Africa  Cameroon  building energy management system  HVAC system  energy storage system  energy flow model  dependability  sustainability  data center  power architectures  optimization  AC/DC hybrid active distribution  hierarchical scheduling  multistakeholders  discrete wind driven optimization  multiobjective optimization  optimal power flow  metaheuristic  wind energy  photovoltaic  smart grid  transformerfault diagnosis  principal component analysis  particle swarm optimization  support vector machine  wind power  integration assessment  interactive load  considerable decomposition  controllable response  SOCP relaxations  optimal power flow  current margins  affine arithmetic  interval variables  optimizingscenarios method  power flow  wind power  active distribution system  virtual power plant  stochastic optimization  decentralized and collaborative optimization  genetic algorithm  multiobjective particle swarm optimization algorithm  artificial bee colony  IEEE Std. 802000  Schwarz’s equation  fuzzy algorithm  radial basis function  neural network  ETAP  distributed generations (DGs)  distribution network reconfiguration  runnerroot algorithm (RRA)  interturn shortedcircuit fault (ISCF)  strong track filter (STF)  linear discriminant analysis (LDA)  switched reluctance machine (SRM)  charging/discharging  electric vehicle  energy management  genetic algorithm  intelligent scatter search  electric vehicles  heterogeneous networks  demand uncertainty  power optimization  Stackelberg game  power system unit commitment  hybrid membrane computing  crossentropy  the genetic algorithm based P system  the biomimetic membrane computing  transient stability  twostage feature selection  particle encoding method  fitness function  power factor compensation  nonsinusoidal circuits  geometric algebra  evolutionary algorithms  electric power contracts  electric energy costs  cost minimization  evolutionary computation  bioinspired algorithms  congestion management  lowvoltage networks  multiobjective particle swarm optimization  affinity propagation clustering  optimal congestion threshold  optimization  magnetic field mitigation  overhead  underground  passive shielding  active shielding  MV/LV substation  n/a
Choose an application
This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and MixedInteger Programming to the most modern methods based on bioinspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.
Cable joint  internal defect  thermal probability density  power system optimization  optimal power flow  developed grew wolf optimizer  energy internet  prosumer  energy management  consensus  demand response  dayahead load forecasting  modular predictor  feature selection  microphasor measurement unit  mutual information theory  stochastic state estimation  twopoint estimation method  JAYA algorithm  multipopulation method (MP)  chaos optimization algorithm (COA)  economic load dispatch problem (ELD)  optimization methods  constrained parameter estimation  extended Kalman filter  power systems  C&I particle swarm optimization  ringdown detection  optimal reactive power dispatch  loss minimization  voltage deviation  hybrid method  tabu search  particle swarm optimization  artificial lighting  simulation  calibration  radiance  GenOpt  street light points  DC optimal power flow  power transfer distribution factors  generalized generation distribution factors  unit commitment  adaptive consensus algorithm  distributed heatelectricity energy management  eight searching subregions  islanded microgrid  dragonfly algorithm  metaheuristic  optimal power flow  particle swarm optimization  CCHP system  energy storage  offdesign performance  dynamic solving framework  battery energy storage system  micro grid  MILP  PCS efficiency  piecewise linear techniques  renewable energy sources  optimal operation  UC  demand bidding  demand response  genetic algorithm  load curtailment  optimization  hybrid renewable energy system  pumpedhydro energy storage  offgrid  optimization  HOMER software  rural electrification  subSaharan Africa  Cameroon  building energy management system  HVAC system  energy storage system  energy flow model  dependability  sustainability  data center  power architectures  optimization  AC/DC hybrid active distribution  hierarchical scheduling  multistakeholders  discrete wind driven optimization  multiobjective optimization  optimal power flow  metaheuristic  wind energy  photovoltaic  smart grid  transformerfault diagnosis  principal component analysis  particle swarm optimization  support vector machine  wind power  integration assessment  interactive load  considerable decomposition  controllable response  SOCP relaxations  optimal power flow  current margins  affine arithmetic  interval variables  optimizingscenarios method  power flow  wind power  active distribution system  virtual power plant  stochastic optimization  decentralized and collaborative optimization  genetic algorithm  multiobjective particle swarm optimization algorithm  artificial bee colony  IEEE Std. 802000  Schwarz’s equation  fuzzy algorithm  radial basis function  neural network  ETAP  distributed generations (DGs)  distribution network reconfiguration  runnerroot algorithm (RRA)  interturn shortedcircuit fault (ISCF)  strong track filter (STF)  linear discriminant analysis (LDA)  switched reluctance machine (SRM)  charging/discharging  electric vehicle  energy management  genetic algorithm  intelligent scatter search  electric vehicles  heterogeneous networks  demand uncertainty  power optimization  Stackelberg game  power system unit commitment  hybrid membrane computing  crossentropy  the genetic algorithm based P system  the biomimetic membrane computing  transient stability  twostage feature selection  particle encoding method  fitness function  power factor compensation  nonsinusoidal circuits  geometric algebra  evolutionary algorithms  electric power contracts  electric energy costs  cost minimization  evolutionary computation  bioinspired algorithms  congestion management  lowvoltage networks  multiobjective particle swarm optimization  affinity propagation clustering  optimal congestion threshold  optimization  magnetic field mitigation  overhead  underground  passive shielding  active shielding  MV/LV substation  n/a
Choose an application
Energy efficiency and lowcarbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyberphysical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smartgrid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smartgrid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on componentoriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyberphysical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.
adaptive control  fuzzy logic  cell  frequency containment control (FCC)  power frequency characteristic  droop control  smart grids  substation automation system (SAS)  highavailability seamless redundancy (HSR)  seamless communications  traffic reduction technique  Power HardwareintheLoop (PHIL)  interface algorithm (IA)  operational range of PHIL  linear/switching amplifier  cyberphysical energy system  cosimulation  conceptual structuration  coupling method  linear decision rules  optimal reserve allocation  robust optimization  web of cells  demand response  realtime balancing market  elastic demand bids  shiftable loads  market design  market design elements  WebofCells  procurement scheme  remuneration scheme  pricing scheme  cascading procurement  realtime simulation  hardwareintheLoop  synchrophasors  microsynchrophasors  distribution phasor measurement units  distribution grid  time synchronization  PHIL (power hardware in the loop)  simulation initialization  synchronization  time delay  synchronous power system  stability  accuracy  peertopeer  distributed control  devicetodevice communication  voltage control  experimentation  smart grid  cyber physical cosimulation  information and communication technology  4G Long Term Evolution—LTE  network reconfiguration  fault management  power loss allocation  plugin electric vehicle  smart grid  locational marginal prices  microgrid  resilience  investment  underground cabling  network outage  battery energy storage system (BESS)  micro combined heat and power (microCHP)  electricity distribution  solar photovoltaics (PV)  islanded operation  distributed control  microgrid  hardwareintheloop  average consensus  multiagent system  active distribution network  laboratory testbed  renewable energy sources  DC link  centralised control  interoperability  smart energy systems  use cases  IEC 62559  SGAM  TOGAF  integration profiles  IHE  testing  gazelle  connectathon  HardwareintheLoop  SoftwareintheLoop  PowerHardwareintheLoop  QuasiDynamic PowerHardwareintheLoop  smart grids  realtime simulation  validation and testing  decentralised energy system  smart grids control strategies  smart grid  wind power  synchronized measurements  PMU  data mining  Architecture  Development  Enterprise Architecture Management  ModelBased Software Engineering  Smart Grid  Smart Grid Architecture Model  SystemofSystems  Validation  design, development and implementation methods for smart grid technologies  modelling and simulation of smart grid systems  cosimulationbased assessment methods  validation techniques for innovative smart grid solutions  realtime simulation and hardwareintheloop experiments
Listing 1  3 of 3 
Sort by

2019 (3)