Search results: Found 32

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
Artificial Neural Networks as Models of Neural Information Processing

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454013 Year: Pages: 220 DOI: 10.3389/978-2-88945-401-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.

Applied Artificial Neural Networks

Author:
ISBN: 9783038422709 9783038422716 Year: Pages: XIV, 244 DOI: 10.3390/books978-3-03842-271-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2016-11-11 19:33:54
License:

Loading...
Export citation

Choose an application

Abstract

Since their re-popularisation in the mid-1980s, artificial neural networks have seen an explosion of research across a diverse spectrum of areas. While an immense amount of research has been undertaken in artificial neural networks themselves—in terms of training, topologies, types, etc.—a similar amount of work has examined their application to a whole host of real-world problems. Such problems are usually difficult to define and hard to solve using conventional techniques. Examples include computer vision, speech recognition, financial applications, medicine, meteorology, robotics, hydrology, etc.This Special Issue focuses on the second of these two research themes, that of the application of neural networks to a diverse range of fields and problems. It collates contributions concerning neural network applications in areas such as engineering, hydrology and medicine.

Traumatic Brain Injury as a Systems Neuroscience Problem

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450985 Year: Pages: 167 DOI: 10.3389/978-2-88945-098-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Traumatic brain injury (TBI) is traditionally viewed as an anatomic and neuropathological condition. Caring for TBI patients is a matter of defining the extent of an anatomical lesion, managing this lesion, and minimizing secondary brain injury. On the research side, the effects of TBI often are studied in the context of neuronal and axonal degeneration and the subsequent deposition of abnormal proteins such as tau. These approaches form the basis of our current understanding of TBI, but they pay less attention to the function of the affected organ, the brain. Much can be learned about TBI by studying this disorder on a systems neuroscience level and correlating changes in neural circuitry with neurological and cognitive function. There are several aspects of TBI that are a natural fit for this perspective, including post-traumatic epilepsy, consciousness, and cognitive sequelae. How individual neurons contribute to network activity and how network function responds to injury are key concepts in examining these areas. In recent years, the available tools for studying the role of neuronal assemblies in TBI have become increasingly sophisticated, ranging from optogenetic and electrophysiological techniques to advanced imaging modalities such as functional magnetic resonance imaging and magnetoencephalography. Further progress in understanding the disruption and subsequent reshaping of networks is likely to have substantial benefits in the treatment of patients with TBI-associated deficits. In this Frontiers Topic, we intend to highlight the systems neuroscience approach to studying TBI. In addition to analyzing the clinical sequelae of TBI in this context, this series of articles explores the pathophysiological mechanisms underlying network dysfunction, including alterations in synaptic activity, changes in neural oscillation patterns, and disruptions in functional connectivity. We also include articles on treatment options for TBI patients that modulate network function. It is our hope that this Frontiers Topic will increase the clinical and scientific communities’ awareness of this viable framework for deepening our knowledge of TBI and improving patient outcomes.

Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198849 Year: Pages: 156 DOI: 10.3389/978-2-88919-884-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For example, ion channels undergo random conformational changes, neurotransmitter release at synapses is discrete and probabilistic, and neural networks are embedded in spontaneous background activity. The mathematical and computational tool sets contributing to our understanding of stochastic neural dynamics have expanded rapidly in recent years. New theories have emerged detailing the dynamics and computational power of the balanced state in recurrent networks. At the cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged our understanding of neuronal dynamics and action potential initiation. Analytical methods have been developed that allow for the calculation of the firing statistics of simplified phenomenological integrate-and-fire models, taking into account adaptation currents or temporal correlations of the noise. This Research Topic is focused on identified physiological/internal noise sources and mechanisms. By "internal", we mean variability that is generated by intrinsic biophysical processes. This includes noise at a range of scales, from ion channels to synapses to neurons to networks. The contributions in this Research Topic introduce innovative mathematical analysis and/or computational methods that relate to empirical measures of neural activity and illuminate the functional role of intrinsic noise in the brain.

Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451098 Year: Pages: 134 DOI: 10.3389/978-2-88945-109-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The interdisciplinary studies between neuroscience and information science have greatly promoted the development of these two fields. The achievements of these studies can help humans understand the essence of biological systems, provide computational platforms for biological experiments, and improve the intelligence and performance of the algorithms in information science. This research topic is focused on the computational modeling of visual cognition, body sense, motor control and their integrations. Firstly, the modeling and simulation of vision and body sense are achieved by 1) understanding neural mechanism underlying sensory perception and cognition, and 2) mimicking accordingly the structures and mechanisms of their signal propagation pathways. The achievement of this procedure could provide neural findings for better encoding and decoding visual and somatosensory perception of humans, and help robots or systems build humanoid robust vision, body sensing, and various emotions. Secondly, the modeling and simulation of the motor system of the primate are achieved by mimicking the coordination of bones, muscles and joints and the control mechanisms of the neural system in the brain and spinal cord. This procedure could help robots achieve fast, robust and accurate manipulations and be used for safe human-computer interaction. Finally, by integrating them, more complete and intelligent systems/robots could be built to accomplish various tasks self-adaptively and automatically.

Augmentation of Brain Function: Facts, Fiction and Controversy. Volume I: Brain-Machine Interfaces

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456147 Year: Pages: 666 DOI: 10.3389/978-2-88945-614-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Volume I, entitled “Augmentation of Brain Functions: Brain-Machine Interfaces”, is a collection of articles on neuroprosthetic technologies that utilize brain-machine interfaces (BMIs). BMIs strive to augment the brain by linking neural activity, recorded invasively or noninvasively, to external devices, such as arm prostheses, exoskeletons that enable bipedal walking, means of communication and technologies that augment attention. In addition to many practical applications, BMIs provide useful research tools for basic science. Several articles cover challenges and controversies in this rapidly developing field, such as ways to improve information transfer rate. BMIs can be applied to the awake state of the brain and to the sleep state, as well. BMIs can augment action planning and decision making. Importantly, BMI operations evoke brain plasticity, which can have long-lasting effects. Advanced neural decoding algorithms that utilize optimal feedback controllers are key to the BMI performance. BMI approach can be combined with the other augmentation methods; such systems are called hybrid BMIs. Overall, it appears that BMI will lead to many powerful and practical brain-augmenting technologies in the future.

Augmentation of Brain Function: Facts, Fiction and Controversy. Volume II: Neurostimulation and Pharmacological Approaches

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456154 Year: Pages: 403 DOI: 10.3389/978-2-88945-615-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The Volume II is entitled “Neurostimulation and pharmacological approaches”. This volume describes augmentation approaches, where improvements in brain functions are achieved by modulation of brain circuits with electrical or optical stimulation, or pharmacological agents. Activation of brain circuits with electrical currents is a conventional approach that includes such methods as (i) intracortical microstimulation (ICMS), (ii) transcranial direct current stimulation (tDCS), and (iii) transcranial magnetic stimulation (TMS). tDCS and TMS are often regarded as noninvasive methods. Yet, they may induce long-lasting plastic changes in the brain. This is why some authors consider the term “noninvasive” misleading when used to describe these and other techniques, such as stimulation with transcranial lasers. The volume further discusses the potential of neurostimulation as a research tool in the studies of perception, cognition and behavior. Additionally, a notion is expressed that brain augmentation with stimulation cannot be described as a net zero sum proposition, where brain resources are reallocated in such a way that gains in one function are balanced by costs elsewhere. In recent years, optogenetic methods have received an increased attention, and several articles in Volume II cover different aspects of this technique. While new optogenetic methods are being developed, the classical electrical stimulation has already been utilized in many clinically relevant applications, like the vestibular implant and tactile neuroprosthesis that utilizes ICMS. As a peculiar usage of neurostimulation and pharmacological methods, Volume II includes several articles on augmented memory. Memory prostheses are a popular recent development in the stimulation-based BMIs. For example, in a hippocampal memory prosthesis, memory content is extracted from hippocampal activity using a multiple-input, multiple-output non-linear dynamical model. As to the pharmacological approaches to augmenting memory and cognition, the pros and cons of using nootropic drugs are discussed.

Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456161 Year: Pages: 338 DOI: 10.3389/978-2-88945-616-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The final volume in this tripartite series on Brain Augmentation is entitled “From Clinical Applications to Ethical Issues and Futuristic Ideas”. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinson’s disease, Huntington’s disease, epilepsy, dementia, Alzheimer’s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinson’s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subject’s age, gender, hormonal levels may affect an individual’s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of “mind control” with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches.

Neural Masses and Fields: Modelling the Dynamics of Brain Activity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194278 Year: Pages: 237 DOI: 10.3389/978-2-88919-427-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology.In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.

Integrating Computational and Neural Findings in Visual Object Perception

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198733 Year: Pages: 137 DOI: 10.3389/978-2-88919-873-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience.

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
Narrow your search