Search results: Found 8

Listing 1 - 8 of 8
Sort by
Textbook of Cortical Brain Stimulation

Author:
ISBN: 9783110412628 9783110441208 Year: Pages: 294 DOI: 10.2478/9783110412628 Language: English
Publisher: De Gruyter
Subject: Neurology
Added to DOAB on : 2015-04-13 11:05:20
License:

Loading...
Export citation

Choose an application

Abstract

Developed over the past 25 years, Cortical Brain Stimulation has emerged as a brand new, cutting-edge option for the treatment of intractable neurological and psychiatric disorders. Devoid of the mortality and disabling morbidity that may accompany deep brain stimulation, stimulating the cortex with a minimally invasive surgical approach had initially proved its worth for the treatment of Central and other Neuropathic Pain Syndromes and later for Parkinson Disease, Dystonia, Stroke and Coma rehabilitation, Epilepsy, Depression and Tinnitus. Written by many of the pioneers in the field, this authoritative treatise is a comprehensive presentation - from surgical details, to clinical results and mechanisms of action. It also provides the busy clinician with comparisons with non-invasive cortical stimulation techniques, such as TMS and tDCS. No other book deals with this form of brain stimulation. The clinician will harness the power of this formidable new therapeutic option, which is being further refined with the advent of closed-loop stimulation.Dr Canavero deciphered the genesis of the central pain syndromes, introduced extradural cortical stimulation for Parkinson Disease and the vegetative state and co-introduced extradural cortical stimulation for stroke rehabilitation. He made worldwide news in 2008 for partially restoring consciousness in two vegetative patients, in 2013 for proposing the HEAVEN/GEMINI protocol for human head transplantation and in 2014 for pushing brain stimulation in the setting of criminal psychopathy. His books include: Central Pain Syndrome, Cambridge Univ. Press, 2011 (2nd ed.), Textbook of therapeutic cortical stimulation, Nova Sci, 2009 and two books in Italian on human sexual behavior.

Non-invasive Brain Stimulation in Neurology and Psychiatry

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451340 Year: Pages: 207 DOI: 10.3389/978-2-88945-134-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Brain stimulation techniques, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS), modify brain function through interaction with multiple neurotransmitters and networks. The implementation of these non-invasive stimulation techniques in physiology, behavioral studies, with modelling or functional imaging has provided an outstanding causal link between brain structure and function and helped identify neural networks mediating cognitive or motor function. The potential efficacy of non-invasive brain stimulation procedures for the management of specific symptoms in diverse neurological and psychiatric conditions has been tested in the past decade or so. For example, repetitive TMS over prefrontal areas has been extensively investigated as a treatment for patients with medication-resistant depression and has been shown to be associated with improvement of mood. Similarly, non-invasive stimulation techniques have been applied to various symptoms of Parkinson’s disease such as bradykinesia and dyskinesias, with variables degrees of success reported. However, attempts to expand previously observed clinical improvements to other neurological disorders (e.g. Tourette’s syndrome, autism, epilepsy) has been controversial. In trying to bypass potential confounding elements, researchers aim to target neural populations altered in disease to either increase or decrease their corrupted baseline activity. In addition, a complementary approach is to extend stimulation protocols that results enhanced behavior in healthy participants. One of the potential limitation of this latter strategy has been that most of the protocols evaluated in healthy participants have been tested in populations that are not comparable to the patient populations. This Frontiers Research Topic on non-invasive brain stimulation and enhancement of function seeks to combine contributions from researchers who found non-invasive brain stimulation induced improvement of either a motoric, cognitive or behavioral nature investigated behaviorally, physiologically or using brain imaging techniques in clinical populations. Investigation of the relation between enhancement of function in healthy populations and improvement of symptoms in patients with neurological or psychiatric disorders needs further consideration. Critically, the topic will be centered on the following topics to expand current knowledge: • selection of adequate stimulation protocols, including simple questions such as whether TMS or TDCS is more efficacious for inducing enhancement of function in brain disease; • methodological issues such as optimizing cortical targets and the use of good control groups; • which symptoms to tackle in different brain disorders. For example, is it possible to de-activate hyperactive cortical regions present in Parkinson disease to induce clinical amelioration? Do protocols used in healthy populations produce similar predictable effects in parkinsonian persons?; • potential of using stimulation protocols in combination with pharmacological or cognitive therapy; • the use of appropriate clinical, behavioral, physiological and imaging tools to measure brain plastic changes. Consideration about possible multi-centre clinical trials: feasibility, problems and authorization pathways. Studies or reviews on cost-effectiveness. The aim of this topic is to determine which disease signs are treatable with non-invasive brain stimulation and available protocols to interfere with altered brain systems and produce enhanced motor and behavior outcomes. This Frontiers Research Topic will be important in identifying new avenues of clinical research for rapid advances in the field.

Traumatic Brain Injury as a Systems Neuroscience Problem

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450985 Year: Pages: 167 DOI: 10.3389/978-2-88945-098-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Traumatic brain injury (TBI) is traditionally viewed as an anatomic and neuropathological condition. Caring for TBI patients is a matter of defining the extent of an anatomical lesion, managing this lesion, and minimizing secondary brain injury. On the research side, the effects of TBI often are studied in the context of neuronal and axonal degeneration and the subsequent deposition of abnormal proteins such as tau. These approaches form the basis of our current understanding of TBI, but they pay less attention to the function of the affected organ, the brain. Much can be learned about TBI by studying this disorder on a systems neuroscience level and correlating changes in neural circuitry with neurological and cognitive function. There are several aspects of TBI that are a natural fit for this perspective, including post-traumatic epilepsy, consciousness, and cognitive sequelae. How individual neurons contribute to network activity and how network function responds to injury are key concepts in examining these areas. In recent years, the available tools for studying the role of neuronal assemblies in TBI have become increasingly sophisticated, ranging from optogenetic and electrophysiological techniques to advanced imaging modalities such as functional magnetic resonance imaging and magnetoencephalography. Further progress in understanding the disruption and subsequent reshaping of networks is likely to have substantial benefits in the treatment of patients with TBI-associated deficits. In this Frontiers Topic, we intend to highlight the systems neuroscience approach to studying TBI. In addition to analyzing the clinical sequelae of TBI in this context, this series of articles explores the pathophysiological mechanisms underlying network dysfunction, including alterations in synaptic activity, changes in neural oscillation patterns, and disruptions in functional connectivity. We also include articles on treatment options for TBI patients that modulate network function. It is our hope that this Frontiers Topic will increase the clinical and scientific communities’ awareness of this viable framework for deepening our knowledge of TBI and improving patient outcomes.

Value and Reward Based Learning in Neurobots

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194315 Year: Pages: 158 DOI: 10.3389/978-2-88919-431-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Organisms are equipped with value systems that signal the salience of environmental cues to their nervous system, causing a change in the nervous system that results in modification of their behavior. These systems are necessary for an organism to adapt its behavior when an important environmental event occurs. A value system constitutes a basic assumption of what is good and bad for an agent. These value systems have been effectively used in robotic systems to shape behavior. For example, many robots have used models of the dopaminergic system to reinforce behavior that leads to rewards. Other modulatory systems that shape behavior are acetylcholine’s effect on attention, norepinephrine’s effect on vigilance, and serotonin’s effect on impulsiveness, mood, and risk. Moreover, hormonal systems such as oxytocin and its effect on trust constitute as a value system. This book presents current research involving neurobiologically inspired robots whose behavior is: 1) Shaped by value and reward learning, 2) adapted through interaction with the environment, and 3) shaped by extracting value from the environment.

Learned Brain Self-Regulation for Emotional Processing and Attentional Modulation: From Theory to Clinical Applications

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199808 Year: Pages: 296 DOI: 10.3389/978-2-88919-980-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Mounting evidence in the last years has demonstrated that self-regulation of brain activity can successfully be achieved by neurofeedback (NF). These methodologies have constituted themselves as new tools for cognitive neuroscience establishing causal links between voluntary brain activations and cognition and behavior, and as potential novel approaches for clinical applications in severe neuropsychiatric disorders (e.g. schizophrenia, depression, Parkinson´s disease, etc.). Current developments of brain imaging-based neurofeedback include the study of the behavioral modifications and neural reorganization produced by learned regulation of the activity of circumscribed brain regions and neuronal network activations. In a rapidly developing field, many open questions and controversies have arisen, i.e. choosing the proper experimental design, the adequate use of control conditions and subjects, the mechanism of learning involved in brain self-regulation, and the still unexplored potential long-lasting effect on brain reorganization and clinical alleviation, among others. This special issue on self-regulation of the brain of emotion and attention using NF approaches interested authors to report technical and methodological advances, scientific investigations in understanding the relation between brain activity and behaviour using NF, and finally studies developing clinical treatment of emotional and attentional disorders. The editors of this special issue anticipate rapid developments in this emerging field.

The Clinical and Ethical Practice of Neuromodulation - Deep Brain Stimulation and Beyond

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453733 Year: Pages: 84 DOI: 10.3389/978-2-88945-373-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

euromodulation is among the fastest-growing areas of medicine, involving many diverse specialties and affecting hundreds of thousands of patients with numerous disorders worldwide. It can briefly be described as the science of how electrical, chemical, and mechanical interventions can modulate the nervous system function. A prominent example of neuromodulation is deep brain stimulation (DBS), an intervention that reflects a fundamental shift in the understanding of neurological and psychiatric diseases: namely as resulting from a dysfunctional activity pattern in a defined neuronal network that can be normalized by targeted stimulation. The application of DBS has grown remarkably and more than 130,000 patients worldwide have obtained a DBS intervention in the past 30 years—most of them for treating movement disorders. This Frontiers Research Topics provides an overview on the current discussion beyond basic research in DBS and other brain stimulation technologies. Researchers from various disciplines, who are working on broader clinical, ethical and social issues related to DBS and related neuromodulation technologies, have contributed to this research topic.

Closed-Loop Systems for Next-Generation Neuroprostheses

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454662 Year: Pages: 326 DOI: 10.3389/978-2-88945-466-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology --- Medicine (General)
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Millions of people worldwide are affected by neurological disorders which disrupt the connections within the brain and between brain and body causing impairments of primary functions and paralysis. Such a number is likely to increase in the next years and current assistive technology is yet limited. A possible response to such disabilities, offered by the neuroscience community, is given by Brain-Machine Interfaces (BMIs) and neuroprostheses. The latter field of research is highly multidisciplinary, since it involves very different and disperse scientific communities, making it fundamental to create connections and to join research efforts. Indeed, the design and development of neuroprosthetic devices span/involve different research topics such as: interfacing of neural systems at different levels of architectural complexity (from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and neural network modeling. In order to develop functional communication with the nervous system and to create a new generation of neuroprostheses, the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improvements in task performance, usability, and embodiment have all been reported in systems utilizing some form of feedback. The bi-directional communication between living neurons and artificial devices is the main final goal of those studies. However, closed-loop systems are still uncommon in the literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on closed-loop systems for next-generation neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and neuromorphic engineers. This eBook aims to facilitate this process by ordering the 25 contributions of this research in which we highlighted in three different parts: (A) Optimization of different blocks composing the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and (C) Closed-loop BMIs for rehabilitation.

New Research in Obsessive-Compulsive Disorder and Major Depression

Authors: ---
ISBN: 9783039210909 / 9783039210916 Year: Pages: 102 DOI: 10.3390/books978-3-03921-091-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Psychology
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Major depression and obsessive–compulsive disorder (OCD) are now recognized among the most frequent psychiatric disorders, affecting 16–17% and 2–3% of the general population, respectively. They are commonly characterized by: i) a high level of psychiatric and somatic comorbidities; ii) a recurrence or chronic profile; and iii) a negative impact on daily functions, thereby leading to a profound impairment of quality of life. Despite significant advances in pharmacological and psychological therapies over the last decades, unsuccessful responses to standard treatment strategies are classically observed in approximately 20–30% of cases. Therefore, there is a significant need for improving the pathophysiological knowledge through a better identification of environmental, clinical, psychological, genetic, anatomical, and biological determinants, specifically implied in the development, the phenotypic expression, and the relapsing course and/or contributing to the therapeutic failure in major depression and OCD. We are convinced that this research approach is particularly relevant providing critical support for the promotion of innovative treatment alternatives potentially useful for the management of resistant forms of major depression and OCD.

Listing 1 - 8 of 8
Sort by
Narrow your search