Search results: Found 3

Listing 1 - 3 of 3
Sort by
Neuroanatomy and transgenic technologies

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195138 Year: Pages: 139 DOI: 10.3389/978-2-88919-513-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Neuroanatomists increasingly rely on techniques enabling them to manipulate genes in defined brain cell populations. In particular, engineered transgenes, which encode a variety of fluorescent reporter proteins can be inserted into the genome or delivered into desired brain regions using viral vectors, thereby allowing the labeling of molecularly-defined populations of neurons and/or glial cells. Transgenic technology can also be used to selectively delete genes in targeted neuronal populations or bi-directionally modulate their electrical excitability using optogenetic or chemogenetic techniques. One of the primary advantages of using transgenic reagents is to simplify the identification and tracing of targeted population of brain cells, which can be laborious using traditional techniques in neuroanatomy. In this research topic, we assembled up-to-date reviews and original articles that demonstrate the versatility and power of transgenic tools in advancing our knowledge of the nervous system, with a special emphasis on the application of transgenic technology to neuroanatomical questions.

Closed-Loop Systems for Next-Generation Neuroprostheses

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454662 Year: Pages: 326 DOI: 10.3389/978-2-88945-466-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology --- Medicine (General)
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Millions of people worldwide are affected by neurological disorders which disrupt the connections within the brain and between brain and body causing impairments of primary functions and paralysis. Such a number is likely to increase in the next years and current assistive technology is yet limited. A possible response to such disabilities, offered by the neuroscience community, is given by Brain-Machine Interfaces (BMIs) and neuroprostheses. The latter field of research is highly multidisciplinary, since it involves very different and disperse scientific communities, making it fundamental to create connections and to join research efforts. Indeed, the design and development of neuroprosthetic devices span/involve different research topics such as: interfacing of neural systems at different levels of architectural complexity (from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and neural network modeling. In order to develop functional communication with the nervous system and to create a new generation of neuroprostheses, the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improvements in task performance, usability, and embodiment have all been reported in systems utilizing some form of feedback. The bi-directional communication between living neurons and artificial devices is the main final goal of those studies. However, closed-loop systems are still uncommon in the literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on closed-loop systems for next-generation neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and neuromorphic engineers. This eBook aims to facilitate this process by ordering the 25 contributions of this research in which we highlighted in three different parts: (A) Optimization of different blocks composing the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and (C) Closed-loop BMIs for rehabilitation.

Neuroproteomics

Authors: ---
ISBN: 9783039281060 9783039281077 Year: Pages: 318 DOI: 10.3390/books978-3-03928-107-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The Neuroproteomics Special Issue overviews the unique challenges that must be addressed to carry out meaningful MS/proteomics analyses on neural tissues and the technologies that are available to meet these challenges. The articles on Alzheimer’s disease, addiction, and schizophrenia illustrate how MS/proteomics technologies can be used to improve our ability to diagnose and understand the molecular basis for neurological diseases. Several articles will be of interest to investigators beyond the field of neurological disorders. The review on the discovery of biofluid biomarkers of neurodegenerative dementias will be of interest to investigators searching for other disease biomarkers. Similarly, the review on the role of neuroproteomics in elucidating mechanisms of drug addiction provides an overview of the utility of MS/proteomics approaches for addressing critical questions in addiction neuroscience that should be applicable to investigators involved in virtually any area of biomedical research. Likewise, the article on developing targeted MS approaches for quantifying postsynaptic density proteins will be useful for any investigator who wishes to design targeted assays for virtually any protein. Finally, the peroxidase-mediated proximity labeling technology, described in the article on mapping the proteome of the synaptic cleft, will be of interest to investigators interested in mapping other spatially restricted proteomes.

Keywords

proteomics --- basal ganglia --- synapses --- synapse specificity --- neuronal circuits --- axons --- dendrites --- neurodegeneration --- synapse --- postsynaptic --- proteome --- mass spectrometry --- protein interaction networks --- connectome --- neurodegeneration --- Alzheimer’s disease --- cerebrospinal fluid --- plasma --- serum --- proteomics --- biomarkers --- LC-MS/MS --- cocaine --- addiction --- cytokine --- neuroimmune --- ventral tegmental area --- peptidylglycine ?-amidating monooxygenase --- cilia --- mating --- signal peptide --- prohormone convertase --- carboxypeptidase --- matrix metalloproteinase --- subtilisin --- pherophorin --- morphine --- opioid receptors --- conformational antibody --- analgesia --- GPCR signaling --- phosphorylation --- AMPA receptor complex --- transmembrane AMPA receptor regulatory protein --- synaptic plasticity --- adolescence --- corticosterone --- proteomics --- yohimbine --- progressive ratio --- reinstatement --- ethanol --- nicotinic receptor --- CaMKII --- PKA --- quantitative phosphoproteomics --- mouse --- phosphorylation --- nicotine --- proteomics --- proteome --- mass spectrometry --- Alzheimer’s disease --- protein aggregation --- laser capture microdissection --- splicing --- U1 snRNP --- synapse --- synaptic cleft --- trans-synaptic adhesion --- proximity labeling --- SynCAM --- Cadm --- Receptor-type tyrosine-protein phosphatase zeta --- R-PTP-zeta --- Ptprz1 --- neuroproteome --- drug abuse --- neuropeptidomics --- phosphorylation --- interactome --- cell type --- neuroscience --- proteomics --- mass spectrometry --- neuron --- proximity labeling --- affinity chromatography --- neuroproteomics --- biotinylation --- amphetamine --- spinophilin --- protein phosphatase-1 --- dopamine --- striatum --- mass spectroscopy --- bioinformatics --- FGF14 --- voltage gated channels --- schizophrenia --- autism --- Alzheimer’s Disease --- sex-specific differences --- synaptic plasticity --- cognitive impairment --- excitatory/inhibitory tone --- n/a --- postsynaptic density --- PSD --- parallel reaction monitoring --- PRM --- targeted proteomics --- data-independent acquisition --- DIA --- quantitative mass spectrometry --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search