Search results: Found 4

Listing 1 - 4 of 4
Sort by
Homeostatic and retrograde signaling mechanisms modulating presynaptic function and plasticity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197040 Year: Pages: 152 DOI: 10.3389/978-2-88919-704-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Activity within neural circuits shapes the synaptic properties of component neurons in a manner that maintains stable excitatory drive, a process referred to as homeostatic plasticity. These potent and adaptive mechanisms have been demonstrated to modulate activity at the level of an individual neuron, synapse, circuit, or entire network, and dysregulation at some or all of these levels may contribute to neuropsychiatric disorders, intellectual disability, and epilepsy. Greater mechanistic understanding of homeostatic plasticity will provide key insights into the etiology of these disorders, which may result from network instability and synaptic dysfunction. Over the past 15 years, the molecular mechanisms of this form of plasticity have been intensely studied in various model organisms, including invertebrates and vertebrates. Though once thought to have a predominantly postsynaptic basis, emerging evidence suggests that homeostatic mechanisms act on both sides of the synapse through mechanisms such as retrograde signaling, to orchestrate compensatory adaptations that maintain stable network function. These trans-synaptic signaling systems ultimately alter neurotransmitter release probability by a variety of mechanisms including changes in vesicle pool size and calcium influx. These adaptations are not expected to occur homogenously at all terminals of a pre-synaptic neuron, as they might synapse with neurons in non-overlapping circuits. However, the factors that govern the homeostatic control of synapse-specific plasticity are only beginning to be understood. In addition to our limited molecular understanding of pre-synaptic homeostatic plasticity, very little is known about its prevalence in vivo or its physiological and disease relevance. In this research topic, we aim to fill the aforementioned void by covering a broad range of topics that include:- Identification of signaling pathways and mechanisms that operate globally or locally to induce specific pre-synaptic adaptations- The nature of pre-synaptic ion channels relevant to this form of plasticity and their synapse-specific modulation and trafficking- Development and utilization of new tools or methods to study homeostatic plasticity in axons and pre-synaptic terminals- Novel mechanisms of homeostatic adaptations in pre-synaptic neurons- Postsynaptic sensors of activity and retrograde synaptic signaling systems- A comprehensive analysis of the kinds of pre-synaptic adaptations in diverse neural circuits and cell types- Identification of physiological or developmental conditions that promote pre-synaptic homeostatic adaptations- How activity-dependent (Hebbian) and homeostatic synaptic changes are integrated to both permit sufficient flexibility and maintain stable activity- Relevance of pre-synaptic homeostatic plasticity to the etiology of neuropsychiatric disorders- Computational modeling of pre-synaptic homeostatic plasticity and network stability.

Reproductive Neuroendocrinology and Social Behavior

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198627 Year: Pages: 313 DOI: 10.3389/978-2-88919-862-7 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General) --- Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Anti-social behaviors and social deficits induced mental disorders are critical problems in our society today. Social behaviors and interactions are shaped by experience, hereditary components (genes, hormones and neuropeptides) and environmental factors (photoperiods and metabolic signals). In addition to the classical gonadotropin-releasing hormone, RFamide peptides, kisspeptin and gonadotropin-inhibiting hormone are emerging as important regulators of the reproductive axis. These neuropeptides are evolutionarily conserved and are regulated by environmental factors. In this Research Topic, we advocate more recent advances in reproductive neuropeptides and sex steroids in the domains of social behavior including sexual and parental behavior, aggression, stress and anxiety. Using multiple species model, we also review how genes and the neuroendocrine system interact at the cell and organismic levels to contribute to social behavior in particular the epigenetic genomic changes caused by early life environment. We provide comprehensive insights of distinct neural networks and how cellular and molecular events in the brain regulate social behavior from a comparative perspective.

Extinction Learning from a Mechanistic and Systems Perspective

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199082 Year: Pages: 277 DOI: 10.3389/978-2-88919-908-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Throughout their lifetime, animals learn to associate stimuli with their consequences. Following memory acquisition and consolidation, circumstances may arise that necessitate that initially learned behaviour is no longer relevant. The ensuing process is called extinction learning and involves a novel and complex learning procedure that involves a large number of neural entities. While the neural fundaments of the initial acquisition are well studied, our understanding of the behavioural and neural basis of extinction is still limited and derives mostly from rodent data acquired through fear conditioning paradigms. Fear conditioning and extinction in rodents is a spectacularly successful paradigm within behavioral neuroscience. However, in recent years, new approaches have been emerging that examine the mechanisms of extinction learning in different setting that also involve appetitive models, a broader comparative perspective, a focus on other brain systems, an examination of hormonal factors, and conditioning of immune responses. Only a broader analysis of the neural fundaments of extinction learning will finally uncover shared and distinct mechanisms that underlie extinction learning in different functional systems. The papers compiled in this Research Topic offer new and valuable insights into the mechanisms and functional implementation of extinction learning at its different levels of complexity, and form the basis for new concepts and research ideas in this field.

Developing synaesthesia

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195794 Year: Pages: 173 DOI: 10.3389/978-2-88919-579-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Synaesthesia is a condition in which a stimulus elicits an additional subjective experience. For example, the letter E printed in black (the inducer) may trigger an additional colour experience as a concurrent (e.g., blue). Synaesthesia tends to run in families and thus, a genetic component is likely. However, given that the stimuli that typically induce synaesthesia are cultural artefacts, a learning component must also be involved. Moreover, there is evidence that synaesthetic experiences not only activate brain areas typically involved in processing sensory input of the concurrent modality; synaesthesia seems to cause a structural reorganisation of the brain. Attempts to train non-synaesthetes with synaesthetic associations have been successful in mimicking certain behavioural aspects and posthypnotic induction of synaesthetic experiences in non-synaesthetes has even led to the according phenomenological reports. These latter findings suggest that structural brain reorganization may not be a critical precondition, but rather a consequence of the sustained coupling of inducers and concurrents. Interestingly, synaesthetes seem to be able to easily transfer synaesthetic experiences to novel stimuli. Beyond this, certain drugs (e.g., LSD) can lead to synaesthesia-like experiences and may provide additional insights into the neurobiological basis of the condition. Furthermore, brain damage can both lead to a sudden presence of synaesthetic experiences in previously non-synaesthetic individuals and a sudden absence of synaesthesia in previously synaesthetic individuals. Moreover, enduring sensory substitution has been effective in inducing a kind of acquired synaesthesia. Besides informing us about the cognitive mechanisms of synaesthesia, synaesthesia research is relevant for more general questions, for example about consciousness such as the binding problem, about crossmodal correspondences and about how individual differences in perceiving and experiencing the world develop. Hence the aim of the current Research Topic is to provide novel insights into the development of synaesthesia both in its genuine and acquired form. We welcome novel experimental work and theoretical contributions (e.g., review and opinion articles) focussing on factors such as brain maturation, learning, training, hypnosis, drugs, sensory substitution and brain damage and their relation to the development of any form of synaesthesia.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

Frontiers Media SA (4)


License

CC by (4)


Language

english (4)


Year
From To Submit

2016 (3)

2015 (1)