Search results: Found 6

Listing 1 - 6 of 6
Sort by
Finite Difference Computing with PDEs: A Modern Software Approach

Authors: ---
Book Series: Texts in Computational Science and Engineering ISSN: 1611-0994 / 2197-179X ISBN: 9783319554556 9783319554563 Year: Pages: 507 DOI: https://doi.org/10.1007/978-3-319-55456-3 Language: English
Publisher: Springer
Subject: Computer Science
Added to DOAB on : 2017-11-24 13:03:18
License:

Loading...
Export citation

Choose an application

Abstract

This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Fractional Calculus: Theory and Applications

Author:
ISBN: 9783038972068 9783038972075 Year: Pages: 208 DOI: 10.3390/books978-3-03897-207-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Mathematics
Added to DOAB on : 2018-09-20 11:39:19
License:

Loading...
Export citation

Choose an application

Abstract

Fractional calculus is allowing integrals and derivatives of any positive order (the term fractional is kept only for historical reasons). It can be considered a branch of mathematical physics that deals with integro-differential equations, where integrals are of convolution type and exhibit mainly singular kernels of power law or logarithm type.It is a subject that has gained considerably popularity and importance in the past few decades in diverse fields of science and engineering. Efficient analytical and numerical methods have been developed but still need particular attention.The purpose of this Special Issue is to establish a collection of articles that reflect the latest mathematical and conceptual developments in the field of fractional calculus and explore the scope for applications in applied sciences.

Marine Propulsors

Authors: ---
ISBN: 9783038972020 9783038972037 Year: Pages: 354 DOI: 10.3390/books978-3-03897-203-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Technology --- Transportation
Added to DOAB on : 2018-10-10 12:11:50
License:

Loading...
Export citation

Choose an application

Abstract

This book provides an update on the state of the art of hydrodynamic aspects of marine propellers and turbines, covering predictions using numerical and experimental methods, where the numerical methods comprise both potential flow panel methods, Navier–Stokes solvers and mixed methods. Open and ducted propellers, as well as azimuthing thrusters are represented, as well as operation in steady conditions, waves and off-design conditions.The book consists of 16 peer-reviewed scientific papers previously published in Journal of Marine Science and Engineering.

Computational Aerodynamic Modeling of Aerospace Vehicles

Authors: ---
ISBN: 9783038976103 Year: Pages: 294 DOI: 10.3390/books978-3-03897-611-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Transportation
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.

Keywords

wake --- bluff body --- square cylinder --- DDES --- URANS --- turbulence model --- large eddy simulation --- Taylor–Green vortex --- numerical dissipation --- modified equation analysis --- truncation error --- MUSCL --- dynamic Smagorinsky subgrid-scale model --- kinetic energy dissipation --- computational fluid dynamics (CFD) --- microfluidics --- numerical methods --- gasdynamics --- shock-channel --- microelectromechanical systems (MEMS) --- discontinuous Galerkin finite element method (DG–FEM) --- fluid mechanics --- characteristics-based scheme --- multi-directional --- Riemann solver --- Godunov method --- bifurcation --- wind tunnel --- neural networks --- modeling --- unsteady aerodynamic characteristics --- high angles of attack --- hypersonic --- wake --- chemistry --- slender-body --- angle of attack --- detection --- after-body --- S-duct diffuser --- flow distortion --- flow control --- vortex generators --- aeroelasticity --- reduced-order model --- flutter --- wind gust responses --- computational fluid dynamics --- convolution integral --- sharp-edge gust --- reduced order aerodynamic model --- geometry --- meshing --- aerodynamics --- CPACS --- MDO --- VLM --- Euler --- CFD --- variable fidelity --- multi-fidelity --- aerodynamic performance --- formation --- VLM --- RANS --- hybrid reduced-order model --- quasi-analytical --- aeroelasticity --- flexible wings --- subsonic --- wing–propeller aerodynamic interaction --- p-factor --- installed propeller --- overset grid approach

Cosmic Plasmas and Electromagnetic Phenomena

Authors: --- ---
ISBN: 9783039214655 / 9783039214662 Year: Pages: 264 DOI: 10.3390/books978-3-03921-466-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Astronomy (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

During the past few decades, plasma science has witnessed a great growth in laboratory studies, in simulations, and in space. Plasma is the most common phase of ordinary matter in the universe. It is a state in which ionized matter (even as low as 1%) becomes highly electrically conductive. As such, long-range electric and magnetic fields dominate its behavior. Cosmic plasmas are mostly associated with stars, supernovae, pulsars and neutron stars, quasars and active galaxies at the vicinities of black holes (i.e., their jets and accretion disks). Cosmic plasma phenomena can be studied with different methods, such as laboratory experiments, astrophysical observations, and theoretical/computational approaches (i.e., MHD, particle-in-cell simulations, etc.). They exhibit a multitude of complex magnetohydrodynamic behaviors, acceleration, radiation, turbulence, and various instability phenomena. This Special Issue addresses the growing need of the plasma science principles in astrophysics and presents our current understanding of the physics of astrophysical plasmas, their electromagnetic behaviors and properties (e.g., shocks, waves, turbulence, instabilities, collimation, acceleration and radiation), both microscopically and macroscopically. This Special Issue provides a series of state-of-the-art reviews from international experts in the field of cosmic plasmas and electromagnetic phenomena using theoretical approaches, astrophysical observations, laboratory experiments, and state-of-the-art simulation studies.

Advanced Numerical Methods in Applied Sciences

Authors: ---
ISBN: 9783038976660 / 9783038976677 Year: Pages: 306 DOI: 10.3390/books978-3-03897-667-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Keywords

time fractional differential equations --- mixed-index problems --- analytical solution --- asymptotic stability --- conservative problems --- Hamiltonian problems --- energy-conserving methods --- Poisson problems --- Hamiltonian Boundary Value Methods --- HBVMs --- line integral methods --- constrained Hamiltonian problems --- Hamiltonian PDEs --- highly oscillatory problems --- boundary element method --- finite difference method --- floating strike Asian options --- continuous geometric average --- barrier options --- isogeometric analysis --- adaptive methods --- hierarchical splines --- THB-splines --- local refinement --- linear systems --- preconditioners --- Cholesky factorization --- limited memory --- Volterra integral equations --- Volterra integro–differential equations --- collocation methods --- multistep methods --- convergence --- B-spline --- optimal basis --- fractional derivative --- Galerkin method --- collocation method --- spectral (eigenvalue) and singular value distributions --- generalized locally Toeplitz sequences --- discretization of systems of differential equations --- higher-order finite element methods --- discontinuous Galerkin methods --- finite difference methods --- isogeometric analysis --- B-splines --- curl–curl operator --- time harmonic Maxwell’s equations and magnetostatic problems --- low rank completion --- matrix ODEs --- gradient system --- ordinary differential equations --- Runge–Kutta --- tree --- stump --- order --- elementary differential --- edge-histogram --- edge-preserving smoothing --- histogram specification --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods --- hyperbolic partial differential equations --- high order discontinuous Galerkin finite element schemes --- shock waves and discontinuities --- vectorization and parallelization --- high performance computing --- generalized Schur algorithm --- null-space --- displacement rank --- structured matrices --- stochastic differential equations --- stochastic multistep methods --- stochastic Volterra integral equations --- mean-square stability --- asymptotic stability --- numerical analysis --- numerical methods --- scientific computing --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)

Springer (1)


License

CC by-nc-nd (5)

CC by (1)


Language

eng (3)

english (3)


Year
From To Submit

2019 (3)

2018 (2)

2017 (1)