Search results: Found 5

Listing 1 - 5 of 5
Sort by
Glial Plasticity in Depression

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199990 Year: Pages: 99 DOI: 10.3389/978-2-88919-999-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Major depression is a highly prevalent disorder that poses a significant social burden in society nowadays. The pathophysiology of this disease is still poorly understood but growing evidence suggests that impaired neuron and glial plasticity may be a key underlying mechanism for the precipitation of the disorder. One of the most surprising findings in this field was the involvement of glial cells in the pathophysiology of major depression and in the action of antidepressants, namely in mechanisms related with adult neurogenesis imbalances or dendritic arborization impairments. In particular, several works refer to alterations in the morphology and numbers of astrocytes, microglia and oligodendrocytes in the context of depression in human patients or animal models of depression. These observations were linked to functional evidences and suggested to underlie the pathophysiology of depression. Among others, these include impairments in the cross-talk between glia and neurons, changes in the level of neurotransmitter or immunoactive substances, myelination status, synapse formation, maintenance, or elimination. In addition to the implication of glia in the pathophysiology of depression, a number of studies is ascribing glia pathways to classically accepted antidepressant mechanisms. Therefore, it is noteworthy to elucidate the role of glia in the effect provided by antidepressant treatment in order to better understand secondary effects and elucidate alternative targets for treatment.

The ventricular-subventricular zone: a source of oligodendrocytes in the adult brain

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192687 Year: Pages: 104 DOI: 10.3389/978-2-88919-268-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma, which commonly result in disability in young adults. To date, there is no effective treatment against these neurological disorders. In the adult brain, there are neural stem cells (NSCs) that reside within a niche denominated ventricular-subventricular zone (V-SVZ) in the lateral wall of the cerebral ventricles. NSCs give rise to neurons and oligodendrocytes that help preserve cellular homeostasis. Growing evidence indicates that V-SVZ progenitor cells may represent an endogenous source of oligodendrocytes that can be useful to treat demyelinating diseases. This e-Book collected the most recent evidence regarding the mechanisms that modulate the proliferation, migration, quiescence, cell-fate choices and survival of oligodendrocyte precursors generated in the V-SVZ. Herein, we compiled information about the role of Sonic hedgehog, NMDA receptors, ErbB proteins, hemopressin, erythropoietin, osmolarity and microglia in the oligodendrocyte production. Some chapters also describe the role of oligodendrocyte precursors in the preservation of cellular homeostasis, aging and white matter repair. All these information is presented as novel research findings, short communications, and review articles, which were written by experts in the field of oligodendrocyte generation, myelin production and white matter re-myelination.

The Major Discoveries of Cajal and His Disciples: Consolidated Milestones for the Neuroscience of the XXIst Century

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450664 Year: Pages: 161 DOI: 10.3389/978-2-88945-066-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

When Santiago Ramón y Cajal started to unravel the fine structure of the nervous system in the last decades of the XIXth century maybe only his unbeatable soul of brave Spaniard imagined that most of the descriptions were scientific truths that lasted to date. Simple histological stainings, curiosity to ameliorate these, monocular microscopes, patience for drawing his observations and a rich imaginative open mind: this is the recipy for Cajal success. His descriptions of connectivity in the nervous system, compiled in Cajal's opus magna published in 1904 ("Textura del sistema nervioso del hombre y los vertebrados") and 1911 ("Histologie du systeme nerveux"), have been corroborated by modern techniques decade after decade. Even more, the main hypothesis that Cajal raised are universally recognised as biological laws, today: the neuron theory, the law on the dynamic polarization of the neuron and the chemotropic hypothesis. That is: the nervous system is not a sincitial network but is formed by individual cells; the transmission of the nerve impulses follow a main direction within a given neuron; the axons are guided by chemical substances in a chemotropic way, till form synapses with their targets. Attracted by Cajal's strong personality and scientific success, a number of medical students and doctors join him in the crusade to explore the nervous system. And the seed planted by the universal savant was really successful: Francisco Tello described interesting aspects of the regeneration of peripheral nerves which are very useful for neuroscientist currently working in this topic; Nicolás Achúcarro significantly contributed to study neuroglia and future microglia; Pío del Río-Hortega identified two out of the four main nervous cell types, the oligodendrocytes and microglia, and proposed an almost still valid classification for the CNS tumours; Fernando de Castro made was the first description of arterial chemoreceptors in the carotid body; Rafael Lorente de Nó was a dominant figure of Neuroscience for decades after the IInd World War, first describing the columnar organization of the cerebral cortex well before Mountcastle, Hubbel and Wiesel. Even less recognised co-workers and disciples of Cajal (his brother Pedro Ramón y Cajal, Domingo Sánchez, the neurologist Rodríguez-Lafora... protagonised discoveries that are consolidated scientific truths today). Altogether, it is difficult (if not impossible) to find a school in biology contributing in such a fundamental and variated way to the common acervo like the collectively known as Cajal School or Spanish Neurological School. Although the particular way to work of the Maestro, selecting a pleiade of brilliant collaborators with whom accomplish such a titanic feat, giving them freedom for their studies, has been recognised and confronted to antagonic systems followed by other relevant scientists and scientific schools, the general recognition of such a significant major milestones for Neuroscience and their vigency in the well-marched XXIst century is not: this is the purpose of this Ebook, to remind all these examples of how successful can be the scientific work when it is minutious, constant and performed by brilliant, imaginative and skilled scientists with a minimal conditions supporting their efforts.When Santiago Ramón y Cajal started to unravel the fine structure of the nervous system in the last decades of the XIXth century maybe only his unbeatable soul of brave Spaniard imagined that most of the descriptions were scientific truths that lasted to date. Simple histological stainings, curiosity to ameliorate these, monocular microscopes, patience for drawing his observations and a rich imaginative open mind: this is the recipy for Cajal success. His descriptions of connectivity in the nervous system, compiled in Cajal's opus magna published in 1904 ("Textura del sistema nervioso del hombre y los vertebrados") and 1911 ("Histologie du systeme nerveux"), have been corroborated by modern techniques decade after decade. Even more, the main hypothesis that Cajal raised are universally recognised as biological laws, today: the neuron theory, the law on the dynamic polarization of the neuron and the chemotropic hypothesis. That is: the nervous system is not a sincitial network but is formed by individual cells; the transmission of the nerve impulses follow a main direction within a given neuron; the axons are guided by chemical substances in a chemotropic way, till form synapses with their targets. Attracted by Cajal's strong personality and scientific success, a number of medical students and doctors join him in the crusade to explore the nervous system. And the seed planted by the universal savant was really successful: Francisco Tello described interesting aspects of the regeneration of peripheral nerves which are very useful for neuroscientist currently working in this topic; Nicolás Achúcarro significantly contributed to study neuroglia and future microglia; Pío del Río-Hortega identified two out of the four main nervous cell types, the oligodendrocytes and microglia, and proposed an almost still valid classification for the CNS tumours; Fernando de Castro made was the first description of arterial chemoreceptors in the carotid body; Rafael Lorente de Nó was a dominant figure of Neuroscience for decades after the IInd World War, first describing the columnar organization of the cerebral cortex well before Mountcastle, Hubbel and Wiesel. Even less recognised co-workers and disciples of Cajal (his brother Pedro Ramón y Cajal, Domingo Sánchez, the neurologist Rodríguez-Lafora... protagonised discoveries that are consolidated scientific truths today). Altogether, it is difficult (if not impossible) to find a school in biology contributing in such a fundamental and variated way to the common acervo like the collectively known as Cajal School or Spanish Neurological School. Although the particular way to work of the Maestro, selecting a pleiade of brilliant collaborators with whom accomplish such a titanic feat, giving them freedom for their studies, has been recognised and confronted to antagonic systems followed by other relevant scientists and scientific schools, the general recognition of such a significant major milestones for Neuroscience and their vigency in the well-marched XXIst century is not: this is the purpose of this Ebook, to remind all these examples of how successful can be the scientific work when it is minutious, constant and performed by brilliant, imaginative and skilled scientists with a minimal conditions supporting their efforts.

Induction of Central Nervous System Disease by the Adaptive Immune Response

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453474 Year: Pages: 141 DOI: 10.3389/978-2-88945-347-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology --- Neurology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Over the last years it has become evident that many neurological diseases of the central nervous system (CNS) are induced by a specific adaptive immune response directed against molecules expressed on CNS-resident cells. Well-recognized examples are anti-N-Methyl-D-Aspartate Receptor (NMDAR) encephalitis which is characterized by the presence of antibodies against neuron-expressed NMDAR, or neuromyelitis optica (NMO), induced by antibodies to astrocyte-expressed aquaporin-4. Many more examples exist, and antibodies, and T or/and B cells have increasingly been associated with CNS disease. Often the symptoms of these diseases have not been typically reported to have an immune aetiology. Beside classical neurological symptoms like ataxia, vision disturbance, and motor or sensory symptoms, these can include cognitive disturbances, behavioral abnormalities, or/and epileptic seizures. Although much has been learned regarding the pathophysiology of prototypic examples of these disorders, there are still major gaps in our understanding of their biology. This may be due to the fact that they are rare diseases, and their therapies are still very limited. This research topic includes contributions addressing the analysis of the adaptive immune response driving disease including target antigens, molecular epitope mapping, and factors involved in the disease pathogenesis such as complement activation cascades, genetic and genomic regulation, as well as environmental triggers. Diagnostic criteria and methods, and treatment are also discussed. The overall aim of the volume is to review progress in our pathophysiological understanding of immune-mediated CNS disorders in order to advance diagnostic and therapeutic approaches, and ultimately improve outcomes for patients.

The Molecular and Cellular Basis for Parkinson's Disease

Author:
ISBN: 9783039215485 / 9783039215492 Year: Pages: 230 DOI: 10.3390/books978-3-03921-549-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The focus on dopamine-sensitive motor symptoms, in association with the improvement of motor complications in the heterogeneous disease entity Parkinson's disease, has led to a certain standstill in research. This Special Issue provides new concepts and new ideas on the pathogenesis, genetics, and clinical maintenance of Parkinson's disease and related disorders. Not only new experimental findings, but also clinical outcomes, case series, and research on alternative, non-pharmacological therapies are included. The objective is to bridge the currently increasing gap between experimental and clinical research on Parkinson's disease and related disorders.

Keywords

epigenetics --- Parkinson’s disease --- brain --- DNA methylation --- Parkinson’s disease --- fatty acid ?-oxidation --- long-chain acylcarnitine --- Parkinson’s disease --- fatty acyls --- glycerolipids --- glycerophospholipids --- sphingolipids --- sterol lipids --- lipoproteins --- ?-synuclein-mediated pathology --- disease-modifying effects --- neuroprotection --- autophagy --- cysteinyl-dopamine --- hypochlorite --- oxidative stress --- Parkinson’s disease --- redox cycling --- Parkinson’s disease --- brain iron --- motor dysfunction --- neurometabolites --- magnetic resonance imaging --- magnetic resonance spectroscopy --- GABA --- spectroscopy --- Parkinson’s disease --- neuroinflammation --- alpha-Synuclein --- immunotherapy --- mesenchymal stem cells --- secretome --- exosomes --- Parkinson’s disease --- microRNAs --- Parkinson disease --- multiprofessional therapy --- inpatient treatment --- multimodal complex treatment --- caffeic acid --- chlorogenic acid --- rotenone --- Parkinson’s disease --- neuroprotection --- dopaminergic neuron --- myenteric plexus --- enteric glial cell --- metallothionein --- Parkinson’s disease --- microbiota --- molecular mimicry --- microbiome --- alpha-synuclein --- curli --- gut-brain axis --- neurodegeneration --- glucocerebrosidase --- Parkinson’s disease --- Gaucher’s disease --- Lewy Body Dementia --- REM sleep behavior disorders --- [123I]FP-CIT-SPECT --- DAT --- nigral cells --- Parkinson’s disease --- parkinsonisms --- cell line --- differentiation --- HOG --- immature oligodendrocyte --- Krabbe’s disease --- oligodendrocyte --- mature oligodendrocyte --- MO3.13 --- myelin --- multiple sclerosis --- schizophrenia --- SH-SY5Y

Listing 1 - 5 of 5
Sort by
Narrow your search