Search results: Found 6

Listing 1 - 6 of 6
Sort by
Neural circuits underlying emotion and motivation: Insights from optogenetics and pharmacogenetics

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195343 Year: Pages: 172 DOI: 10.3389/978-2-88919-534-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Application of optogenetic and pharmacogenetic tools to study the neural circuits underlying emotional valence, feeding, arousal and motivated behaviors has provided crucial insights into brain function. Expression of light sensitive proteins into specific neurons and subsequent stimulation by light (optogenetics) to control neuronal activity or expression of designer receptors exclusively activated by designer drugs (DREADD) in specific neuronal populations with subsequent activation or suppression of neuronal activity by an otherwise inert ligand (pharmacogenetics) provides control over defined elements of neural circuits. These novel tools have provided a more in depth understanding into several questions about brain function. These include: • Regulation of sleep-wake transition by the interaction of hypocretin neurons of lateral hypothalamus and nor adrenergic neurons of the locus coruleaus • Regulation of feeding by AGRP and POMC neurons in arcuate nucleus of the hypothalamus • Place preference and positive reinforcement by activation of DA neuron of VTA • Place aversion by activation of VTA GABA and lateral habenula neurons • Opposing influences on reinforcement by activation of D1 and D2 expressing medium spiny neurons of dorsal striatum and nucleus accumbens The list still grows... From cell type specific manipulations to signaling properties in the cell (Dietz et al 2012) with unprecedented temporal resolution, these tools revolutionize the exploration of pathways/connectivity. Recent years also witnessed the extension of applying these tools from studying emotional valence and motivated behavior to reactivation of memory. c-fos based genetic approaches allowed us to integrate light sensitive opsins or DREADD receptor into specific neurons that are activated by certain learning events (for example fear) (Garner et al 2012; Liu et al 2012). In this Research Topic, we welcome researchers to contribute original research articles, review articles, methods and commentary on topics utilizing optogenetic and pharmacogenetic tools to study the neural circuits underlying emotional valence, motivation, reinforcement and memory. We believe the Research Topic will shine light on various questions we have about brain function by using novel optogenetic and pharmacogenetic tools and will hopefully inspire ongoing research to overcome the hurdles of using these tools to advance clinical applications.

Neural Circuits Revealed

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195619 Year: Pages: 181 DOI: 10.3389/978-2-88919-561-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Deciphering anatomical and functional maps in the nervous system is a main challenge for both clinical and basic neuroscience. Modern approaches to mark and manipulate neurons are bringing us closer than ever to better understand nervous system wiring diagrams. Here we present both original research and review material on current work in this area. Together, this eBook aims to provide a comprehensive snapshot of some of the tools and technologies currently available to investigate brain wiring and function, as well as discuss ongoing challenges the field will be confronted with in the future.

Optogenetic Tools in the Molecular Spotlight

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198993 Year: Pages: 179 DOI: 10.3389/978-2-88919-899-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The rise of optogenetics as a standard technique to non-invasively probe and monitor biological function created an immense interest in the molecular function of photosensory proteins. These photoreceptors are usually protein/pigment complexes that translate light into biological information and have become essential tools in cell biology and neurobiology as their function is genetically encoded and can be conveniently delivered into a given cell. Like for fluorescent proteins that quickly became invaluable as genetically encodable reporters in microscopy and imaging, variants of photosensory proteins with customized sensitivity and functionality are nowadays in high demand. In this ebook we feature reviews and original research on molecular approaches from synthetic biology and molecular spectroscopy to computational molecular modelling that all aspire to elucidate the molecular prerequisites for the photosensory function of the given proteins. The principle property of changing activity of biological function simply by application of light is not only very attractive for cell biology, it also offers unique opportunities for molecular studies as excitation can be controlled with high time precision. Especially in spectroscopy the usually fully reversible photoactivation of photosensory proteins allows researchers to to perform time resolved studies with up to femtosecond resolution. In addition, functional variants can be investigated and quickly screened in common biochemical experiments. The insights that are obtained by the here presented various yet complementary methods will ultimately allow us write the script for a molecular movie from excitation of the protein by a photon to activation of its biological function. Such deep understanding does not only provide unique insights into the dynamics of protein function, it will also ultimately enable us to rationally design novel optogenetic tools to be used in cell biology and therapy.

Imaging Synapse Structure and Function

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451753 Year: Pages: 125 DOI: 10.3389/978-2-88945-175-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

Development of new imaging technologies in recent years has transformed neuroscience in profound ways. Following on the heels of the revolution based on the Green Fluorescent Protein, refined genetically-encoded fluorescent reporters and genetic targeting strategies now enable optical recording of synaptic transmission in defined neuronal populations at speeds approaching the enviable temporal resolution of electrophysiology. Super-resolution light microscopy permits observation of synapses and their molecular machinery at sub-diffraction resolution. At the ultrastructural level, automated forms of electron microscopy, improvements in specimen fixation methods, and recent efforts to correlate data from light and electron micrographs now make the reconstruction of functional neural circuits a reality. Finally, the use of optogenetic actuators, such as channelrhodopsins, allows precise temporal and spatial manipulation of neuronal activity and is revealing profound insights into the organization of neural circuits and their roles in behavior. This research topic highlights recent advances in both light and electron microscopy, with a specific focus on approaches that combine innovations from several different fields to obtain novel information about synapse structure and function. We are confident that this collection of articles - three original research papers, six reviews, one methods paper and one perspective article - will enable neuroscientists to achieve the next generation of experiments aimed at cracking the neural code.

Synthetic DNA and RNA Programming

Authors: ---
ISBN: 9783039217342 / 9783039217359 Year: Pages: 188 DOI: 10.3390/books978-3-03921-735-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dear Colleagues, Synthetic biology is a broad and emerging discipline that capitalizes on recent advances in molecular biology, genetics, protein and RNA engineering and omics technologies. These technologies have transformed our ability to reveal the biology of the cell and the molecular basis of disease.

Keywords

fluorescent reporter --- live cell imaging --- microRNA quantification --- optogenetics --- small molecule drug screening --- Escherichia coli --- recombinant protein production --- gene overexpression --- growth effect --- ASKA collection --- codon bias --- branched-chain amino acids --- gene ontology --- genetic code expansion --- protein kinase B --- phosphoinositide dependent kinase 1 --- phosphoseryl-tRNA synthetase --- tRNASep --- alanyl-tRNA synthetase --- class II aminoacyl-tRNA synthetase --- expanded genetic code --- lysine acetylation --- posttranslational modification --- genetic code expansion --- transfer RNA --- synthetic biology --- non-canonical amino acids --- selenocysteine --- genetic code expansion --- release factor 1 --- amber stop codon suppression --- M. jannaschii orthogonal pair --- fluorescence-based screen --- cyclic peptides --- biopharmaceuticals --- mRNA display --- yeast two hybrid --- tRNASer --- mistranslation --- anticodon --- functional conservation --- alternative amino acid and nucleotide repertoires --- alternative core cellular chemistries --- biocontainment --- genetic firewall --- genetic isolation --- orthogonal central dogma of molecular biology --- synthetic life --- xenobiology --- genome engineering --- synthetic biology --- yeasts --- Metschnikowia --- genetic tools --- DNA delivery --- CUG-Ser --- reverse polymerization --- tRNA editing --- tRNA repair --- protein engineering --- synthetic biology --- tRNA --- misacylation --- indirect tRNA aminoacylation --- AspRS --- GluRS-like --- genetic code expansion --- genome synthesis --- genome editing --- microRNA --- protein modification --- RNA metabolism --- tRNA --- synthetic biology --- unnatural amino acids --- unnatural nucleotides

Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 / 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search
-->