Search results: Found 2

Listing 1 - 2 of 2
Sort by
Coordination Chemistry of Silicon

Author:
ISBN: 9783038976387 Year: Pages: 225 DOI: 10.3390/books978-3-03897-639-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

silanetriols --- disiloxane tetrols --- silsesquioxanes --- condensation --- molecular cage --- platinum --- primary silane --- hydrido complex --- oxidative addition --- ligand-exchange reaction --- X-ray crystallography --- Si–Cl activation --- germylene --- digermene --- digermacyclobutadiene --- palladium --- cluster --- cyclic organopolysilane --- template --- bridging silylene ligand --- isocyanide --- hydrogen bonds --- silicon --- 2-silylpyrrolidines --- stereochemistry --- X-ray crystallography --- Baird’s rule --- computational chemistry --- excited state aromaticity --- Photostability --- dye-sensitized solar cell --- disilanylene polymer --- photoreaction --- surface modification --- TiO2 --- silylene --- germylene --- N-heterocyclic carbene --- oxidative addition --- siloxanes --- host-guest chemistry --- supramolecular chemistry --- main group coordination chemistry --- hydrogen bonding --- adsorption --- bond activation --- bonding analysis --- density functional theory --- distorted coordination --- molecular orbital analysis --- silicon surfaces --- disilene --- functionalization --- ?-electron systems --- silicon --- N-heterocyclic carbenes --- bromosilylenes --- silyliumylidenes --- dehydrobromination --- silicon cluster --- siliconoid --- nanoparticle --- computation --- silicon --- N-heterocyclic carbenes --- silyliumylidenes --- small molecule activation --- mechanistic insights --- organosilicon --- reductant --- N-Heterocyclic tetrylene --- salt-free --- germanium --- germanethione --- germathioacid chloride --- N-heterocyclic carbines --- ?-chloro-?-hydrooligosilane --- titanium --- ruthenium --- dehydrogenative alkoxylation --- cluster --- isomerization --- silicon --- siliconoid --- subvalent compounds --- AIM --- DFT --- intermetallic bond --- 29Si NMR spectroscopy --- X-ray diffraction

Advances in Chitin/Chitosan Characterization and Applications

Authors: ---
ISBN: 9783038978022 9783038978039 Year: Pages: 414 DOI: 10.3390/books978-3-03897-803-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Functional advanced biopolymers have received far less attention than renewable biomass (cellulose, rubber, etc.) used for energy production. Among the most advanced biopolymers known is chitosan. The term chitosan refers to a family of polysaccharides obtained by partial de-N-acetylation from chitin, one of the most abundant renewable resources in the biosphere. Chitosan has been firmly established as having unique material properties as well as biological activities. Either in its native form or as a chemical derivative, chitosan is amenable to being processed—typically under mild conditions—into soft materials such as hydrogels, colloidal nanoparticles, or nanofibers. Given its multiple biological properties, including biodegradability, antimicrobial effects, gene transfectability, and metal adsorption—to name but a few—chitosan is regarded as a widely versatile building block in various sectors (e.g., agriculture, food, cosmetics, pharmacy) and for various applications (medical devices, metal adsorption, catalysis, etc.). This Special Issue presents an updated account addressing some of the major applications, including also chemical and enzymatic modifications of oligos and polymers. A better understanding of the properties that underpin the use of chitin and chitosan in different fields is key for boosting their more extensive industrial utilization, as well as to aid regulatory agencies in establishing specifications, guidelines, and standards for the different types of products and applications.

Keywords

aerogels --- chitosan --- ionic liquids --- ionogels --- zinc–chitosan complexes --- characterization --- bio-sorbent --- phosphate --- adsorption --- mechanism --- thermodynamic --- chitosan --- hydrogel --- phase transition --- gelation mechanism --- chitosan --- defense responses --- fruits --- nanoparticles --- plant growth --- pesticides --- Boron --- chitosan --- iron(III) hydroxide --- neodymium --- sorption --- chitin --- chitosan --- chitosan derivative --- chitin derivative --- oral care --- skin care --- hear care --- marine resources --- over-the counter-drug --- polymer carrier --- chitin --- chitosan --- nanostructured biomaterial --- polymer --- self-masking nanosphere lithography --- cicada --- chitosan --- self-assembled --- polyelectrolyte complex --- nanoparticle --- drug delivery --- Citrobacter --- biosynthesis --- bioflocculant --- chitosan --- metabolic pathway --- PEO/chitosan blend --- swelling --- mechanical properties --- wet and dried states --- chitosan --- biological activity --- medical applications --- chitosan --- PCL --- strontium --- scaffolds --- craniofacial engineering --- chitin --- chitosan --- derivatization --- controlled functionalization --- click chemistry --- graft copolymer --- cyclodextrin --- dendrimer --- ionic liquids --- chitin deacetylases --- chitosan --- chitooligosaccharides --- carbohydrate esterases --- structure --- substrate specificity --- deacetylation pattern --- binary --- chitosan --- desorption --- iron --- lead --- mercury --- salt effects --- single --- sorption competition --- chitosan supported copper --- heterogeneous catalyst --- organosilicon compound --- easily recyclable --- chitosan --- papermaking --- wet-end --- coating --- wastewater --- ionic cross-linking --- eco-friendly formulations --- thermal transition sol-gel --- drug delivery systems --- MTDSC --- DSC --- gene delivery --- non-viral vectors --- chitosan structure --- pDNA --- siRNA --- TEOS --- methylene blue --- chitosan --- modelling --- cross-linking --- interpenetrating --- XRD --- FTIR

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)