Search results: Found 6

Listing 1 - 6 of 6
Sort by
Label-Free Sensing

ISBN: 9783038422105 9783038422112 Year: Pages: 224 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-06-07 11:21:53
License:

Harmonic Oscillators and Two-by‑two Matrices in Symmetry Problems in Physics

Author:
ISBN: 9783038425007 9783038425014 Year: Pages: X, 360 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics
Added to DOAB on : 2017-10-02 11:58:37
License:

Loading...
Export citation

Choose an application

Abstract

This book consists of the articles published in the special issues of this Symmetry journal based on two-by-two matrices and harmonic oscillators. The book also contains additional articles published by the guest editor in this Symmetry journal. They are of course based on harmonic oscillators and/or two-by-two matrices. The subject of symmetry is based on exactly soluble problems in physics, and the physical theory is not soluble unless it is based on oscillators and/or two-by-two matrices. The authors of those two special issues were aware of this environment when they submitted their articles. This book could therefore serve as an example to illustrate this important aspect of symmetry problems in physics.

Dynamics Days Latin America and the Caribbean 2018

Authors: ---
ISBN: 9783039215034 / 9783039215041 Year: Pages: 142 DOI: 10.3390/books978-3-03921-504-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This book contains various works presented at the Dynamics Days Latin America and the Caribbean (DDays LAC) 2018. Since its beginnings, a key goal of the DDays LAC has been to promote cross-fertilization of ideas from different areas within nonlinear dynamics. On this occasion, the contributions range from experimental to theoretical research, including (but not limited to) chaos, control theory, synchronization, statistical physics, stochastic processes, complex systems and networks, nonlinear time-series analysis, computational methods, fluid dynamics, nonlinear waves, pattern formation, population dynamics, ecological modeling, neural dynamics, and systems biology. The interested reader will find this book to be a useful reference in identifying ground-breaking problems in Physics, Mathematics, Engineering, and Interdisciplinary Sciences, with innovative models and methods that provide insightful solutions. This book is a must-read for anyone looking for new developments of Applied Mathematics and Physics in connection with complex systems, synchronization, neural dynamics, fluid dynamics, ecological networks, and epidemics.

Radiation Tolerant Electronics

Author:
ISBN: 9783039212798 / 9783039212804 Year: Pages: 210 DOI: 10.3390/books978-3-03921-280-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Keywords

physical unclonable function --- FPGA --- total ionizing dose --- Co-60 gamma radiation --- ring-oscillator --- Image processing --- line buffer --- SRAM-based FPGA --- single event upset (SEU) --- configuration memory --- soft error --- radiation-hardened --- instrumentation amplifier --- sensor readout IC --- total ionizing dose --- nuclear fusion --- radiation hardening --- hardening by design --- TMR --- selective hardening --- VHDL --- FPGA --- radiation hardening --- single event upsets --- heavy ions --- error rates --- single-event upsets (SEUs) --- digital integrated circuits --- triple modular redundancy (TMR) --- radiation hardening by design --- TMR --- FMR --- 4MR --- triplex–duplex --- FPGA-based digital controller --- radiation tolerant --- single event effects --- proton irradiation --- RFIC --- SEE testing --- space application --- CMOS --- TDC --- radiation effects --- total ionizing dose (TID) --- single-shot --- PLL --- ring oscillator --- analog single-event transient (ASET) --- bandgap voltage reference (BGR) --- CMOS analog integrated circuits --- gamma-rays --- heavy-ions --- ionization --- protons --- radiation hardening by design (RHBD) --- reference circuits --- single-event effects (SEE) --- space electronics --- total ionization dose (TID) --- voltage reference --- X-rays --- radiation-hardened --- single event gate rupture (SEGR) --- SEB --- power MOSFETs --- Single-Event Upsets (SEUs) --- radiation effects --- Ring Oscillators --- Impulse Sensitive Function --- Radiation Hardening by Design --- fault tolerance --- single event upset --- proton irradiation effects --- neutron irradiation effects --- soft errors --- saturation effect --- gain degradation --- total ionizing dose --- gamma ray --- bipolar transistor --- single event transient (SET) --- single event opset (SEU) --- radiation-hardening-by-design (RHBD) --- frequency synthesizers --- voltage controlled oscillator (VCO) --- frequency divider by two --- CMOS --- n/a

Selected Problems in Fluid Flow and Heat Transfer

Author:
ISBN: 9783039214273 / 9783039214280 Year: Pages: 460 DOI: 10.3390/books978-3-03921-428-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

performance characteristics --- Positive Temperature Coefficient (PTC) elements --- heat transfer --- thermal performance --- Computational Fluid Dynamics (CFD) simulation --- air heater --- impingement heat transfer enhancement --- orthogonal jet --- turbulence --- flat plate --- Colebrook equation --- Colebrook-White --- flow friction --- iterative procedure --- logarithms --- Padé polynomials --- hydraulic resistances --- turbulent flow --- pipes --- computational burden --- thermodynamic --- numerical simulation --- thermal effect --- axial piston pumps --- microbubble pump --- bubble generation --- pump efficiency --- bubble size --- concentration --- particle counter --- flow-induced motion --- sharp sections --- T-section prism --- load resistances --- section aspect ratios --- energy conversion --- thermosyphon --- phase change --- two-phase flow --- visualization --- superheated steam --- triaxial stress --- thermogravimetry --- X-ray microtomography --- thermal cracking --- microbubbles --- fluidics --- flow oscillation --- oscillators --- energetics --- pressure loss --- pressure drop --- friction factor --- multiphase flow --- flow rate --- flow regime --- POD --- entropy generation --- boundary layer --- laminar separation bubble --- two-phase flow --- pump performance --- computational fluid dynamics --- centrifugal pump --- flow behavior --- magnetic field --- ferrofluid --- porous cavity --- heat transfer --- mass transfer --- numerical modeling --- numerical modeling --- surrogate model --- correlation --- fin-tube --- spiral fin-tube --- CFD --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- nonlinear thermal radiation --- heat transfer --- chemical reaction --- mass transfer --- method of moment --- numerical results --- transient analysis --- pumps --- moment of inertia --- water hammer --- pipe flow --- wind turbine --- downwind --- tower shadow --- load --- tower --- BEM --- actuator disc --- CANDU-6 --- PHWR --- moderator --- turbulence --- OpenFOAM --- printed circuit heat exchanger --- supercritical LNG --- zigzag type --- heat transfer performance --- gas turbine engine --- particle deposition --- capture efficiency --- multiphase flow --- tip leakage flow --- detached-eddy simulation --- vortex breakdown --- transonic compressor --- POD --- tip leakage flow --- decomposition region --- decomposition dimensionalities --- vortex identification --- SPIV --- fire-spreading characteristics --- real vehicle experiments --- toxic gases --- temperature distributions --- unsteady heat release rate --- thermal energy recovery --- flue gas --- dew point temperature --- condensation --- Aspen® --- thermoacoustic electricity generator --- multi-stage --- traveling-wave heat engine --- push-pull --- inertance-compliance --- acoustic streaming --- n/a

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 / 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (5)

CC by (1)


Language

eng (4)

english (2)


Year
From To Submit

2019 (4)

2017 (1)

2016 (1)