Search results: Found 10

Listing 1 - 10 of 10
Sort by
Food Packaging Based on Nanomaterials

Authors: --- ---
ISBN: 9783038975014 / 9783038975021 Year: Pages: 114 DOI: 10.3390/books978-3-03897-502-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2019-01-07 11:41:52
License:

Loading...
Export citation

Choose an application

Abstract

The use of nanotechnologies in the food-packaging area has opened up a number of possibilities derived from the inherent characteristics of nanoadditives, which can either improve relevant properties of neat polymers (such as barrier or mechanical properties) or introduce new functionalities (for active and bioactive packaging applications or even for sensing). This is an exciting and rapidly growing field of study, and very interesting developments are unfolding. Although the aim of these novel materials is to improve packaged food quality and safety, the toxicological effects derived from their potential migration from the polymer structures is also under consideration.This Special Issue compiles a review and five original papers describing novel nanocomposites with improved packaging properties, the use of nanotechnologies for smart packaging applications, and nanoparticle migration studies from novel nanocomposites.

Bacterial pathogens in the non-clinical environment

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195589 Year: Pages: 100 DOI: 10.3389/978-2-88919-558-9 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The transmission route used by many bacterial pathogens of clinical importance includes a step outside the host; thereafter refer to as the non-clinical environment (NCE). Obvious examples include foodborne and waterborne pathogens and also pathogens that are transmitted by hands or aerosols. In the NCE, pathogens have to cope with the presence of toxic compounds, sub-optimal temperature, starvation, presence of competitors and predators. Adaptation of bacterial pathogens to such stresses affects their interaction with the host. This Research Topic presents important concept to understand the life of bacterial pathogens in the NCE and provides the reader with an overview of the strategies used by bacterial pathogens to survive and replicate outside the host.

Determining Cycle Times for Packing in Distribution Centres

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Fördertechnik und Logistiksysteme des Karlsruher Instituts für Technologie ISSN: 01712772 ISBN: 9783731502029 Year: Volume: 82 Pages: XIV, 168 p. DOI: 10.5445/KSP/1000040086 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Scope of this work is to determine cycle time formulas for packing in distribution centres. No such formulas exist today, even if it is the second most important process after picking. Based on examining packing, morphological boxes showing time influencing parameters are derived. The most significant parameters are identified using analysis of variance (ANOVA). Cycle times are determined and applied to cases. These prove that the formulas can be used to calculate the time required for packing.

Millimeterwellen On-Chip Antennensysteme für die Integration in SoC Applikationen

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik ISSN: 18684696 ISBN: 9783731506676 Year: Volume: 86 Pages: XV, 181 p. DOI: 10.5445/KSP/1000069365 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

In this work antenna systems for radar- and communication systems are presented. Additionally, a QFN-based packaging concept is evaluated. For communication systems the antenna systems are optimized for maximum radiated power to extend the transmit range. Therefore, a new concept for the power-combination of parallelized amplifiers is presented, where the signals of the amplifiers are combined in a single antenna element.

Food Packaging. Materials and Technologies

Authors: ---
ISBN: 9783038977667 9783038977674 Year: Pages: 216 DOI: 10.3390/books978-3-03897-767-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Because of the increasing pressure on both food safety and packaging/food waste, the topic is important both for academics, applied research, industry and also for environment protection. Different materials, such as glass, metals, paper and paperboards, and non-degradable and degradable polymers, with versatile properties, are attractive for potential uses in food packaging. Food packaging is the largest area of application within the food sector. Only the nanotechnology-enabled products in the food sector account for ~50% of the market value, with and the annual growth rate is 11.65%. Technological developments are also of great interest. In the food sector, nanotechnology is involved in packaging materials with extremely high gas barriers, antimicrobial properties, and also in nanoencapsulants for the delivery of nutrients, flavors, or aromas, antimicrobial, and antioxidant compounds. Applications of materials, including nanomaterials in packaging and food safety, are in forms of: edible films, polymer nanocomposites, as high barrier packaging materials, nanocoatings, surface biocides, silver nanoparticles as potent antimicrobial agents, nutrition and neutraceuticals, active/bioactive packaging, intelligent packaging, nanosensors and nanomaterial-based assays for the detection of food relevant analytes (gasses, small organic molecules and food-borne pathogens) and bioplastics.

Piezoelectric MEMS

Authors: ---
ISBN: 9783038970057 9783038970064 Year: Pages: VIII, 168 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2018-07-10 12:55:10
License:

Loading...
Export citation

Choose an application

Abstract

Electromechanical transducers based on piezoelectric layers and thin films are continuously finding their way into micro-electromechanical systems (MEMS). Piezoelectric transducers feature a linear voltage response, no snap-in behavior and can provide both attractive and repulsive forces. This removes inherent physical limitations present in the commonly used electrostatic transducer approach, while maintaining beneficial properties such as low-power operation. In order to exploit the full potential of piezoelectric MEMS, interdisciplinary research efforts range from investigations of advanced piezoelectric materials over the design of novel piezoelectric MEMS sensor and actuator devices, to the integration of PiezoMEMS devices into full low-power systems. In this Special Issue, the current status of this exciting research field will be presented, covering a wide range of topics including, but not limited to:• Experimental and theoretical research on piezoelectric materials such as AlN, ScAlN, ZnO or PZT, PVDF with a strong focus on the application of MEMS devices.• Deposition and synthesis techniques for piezoelectric materials enabling integration of those materials into MEMS fabrication processes.• Modelling and simulation of piezoelectric MEMS devices and systems.• Piezoelectric MEMS resonators for measuring physical quantities such as mass, acceleration, yaw rate, pressure and viscosity or density of liquids.• Optical MEMS devices, such as scanning micro mirror devices and optical switches, based on piezoelectric MEMS.• Acoustic devices, such as SAW, BAW or FBARs and acoustic transducers, based on piezoelectric MEMS, such as microphones or loudspeakers.• Piezoelectric energy harvesting devices.• Specific packaging aspects of piezoelectric devices and systems.• Low and zero power systems, featuring low-power sensors combined with energy harvesting devices, at least one of which is based on piezoelectric MEMS.

Silver Nano/microparticles: Modification and Applications

Authors: ---
ISBN: 9783039211777 / 9783039211784 Year: Pages: 206 DOI: 10.3390/books978-3-03921-178-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Nano/micro-size particles are widely applied in various fields. Among the various particles, silver particles are considered among the most prominent nanomaterials in the biomedical and industrial sectors because of their favorable physical, chemical, and biological characteristics. Thus, numerous studies have been conducted to evaluate their properties and utilize them in various applications, such as diagnostics, anti-bacterial and anti-cancer therapeutics, and optoelectronics. The properties of silver particles are strongly influenced by their size, morphological shape, and surface characteristics, which can be modified by diverse synthetic methods, reducing agents, and stabilizers. This Special Issue provides a range of original contributions detailing the synthesis, modification, properties, and applications of silver materials. Nine outstanding papers describing examples of the most recent advances in silver nano/microparticles are included. Silver nano/micro-size particles have many potential advantages as next-generation materials in various areas, including nanomedicine. This Special Issue might be helpful to understand the value of silver particles in the biomedical and industrial fields

Polymeric Materials: Surfaces, Interfaces and Bioapplications

Authors: --- --- --- --- et al.
ISBN: 9783038979623 / 9783038979630 Year: Pages: 342 DOI: 10.3390/books978-3-03897-963-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.

Keywords

corn stalk fiber --- friction composite --- friction and wear --- worn surface morphology --- antifouling coatings --- biofouling --- natural biofilms --- single-stranded conformation polymorphism --- polydimethylsiloxane --- multidimensional scale analysis --- antimicrobial coatings --- porous surfaces --- breath figures --- antimicrobial polymer --- coatings --- hydrogel --- protein-repellent polymer --- surface-attached polymer network --- polymer cross-linking --- alginate modification --- calcium chloride --- microparticles --- spray drying --- prolonged drug release --- gradient wrinkles --- UV/ozone --- irradiance --- polymeric composites --- bonding agents --- antibacterial --- oral biofilms --- periodontal pathogens --- caries inhibition --- recycling --- polypropylene --- biodegradable polymers --- degradation --- inmiscibility --- hemicelluloses --- chitosan --- composite films --- oxygen barrier property --- food packaging --- nanosecond laser surface modification --- ABS (Acrylonitrile-Butadiene-Styrene) --- surface wettability --- superhydrophobic --- superhydrophilic --- poly(x-chlorostyrene) --- honeycomb --- breath figures --- conformational entropy --- spinal anatomy --- intervertebral disc --- degenerative disc disease --- herniated disc --- spinal fusion --- total disc replacement --- tissue engineering --- Electrically conductive polymers --- Electroactive biomaterials --- Electrical stimulation --- Smart composites --- Bioelectric effect --- Drug delivery --- Artificial muscle --- bio-based --- fossil --- hybrids --- blends --- packaging --- bio-based polymers --- antimicrobial --- biodegradable --- sustainable --- eco-friendly --- graphene oxide --- chitosan --- composites --- scaffolds --- tissue engineering --- surface modification/functionalization --- surface segregation --- micro- and nanopatterned films --- blends and (nano)composites --- coatings --- surface wettability --- stimuli-responsive materials/smart surfaces --- bioapplications

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 / 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Surface Modification to Improve Properties of Materials

Author:
ISBN: 9783038977964 9783038977971 Year: Pages: 356 DOI: 10.3390/books978-3-03897-797-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.

Keywords

sulphur hexafluoride (SF6) plasma --- tetrafluoromethane (CF4) plasma --- polymer polyethylene terephthalate (PET) --- surface modification --- functionalization and wettability --- optical emission spectroscopy (OES) --- electronegativity --- PVD nanocomposite coatings --- aluminum die casting --- tool life --- tribological performance --- plasma surface modification --- polymer polypropylene --- neutral oxygen atom density --- initial surface functionalization --- food packaging --- wettability --- tantalum --- hardness --- gradient nanostructured layer --- grain size --- residual stress --- dry wear behavior --- surface texture --- surface treatment --- Ti6Al4V alloy --- tribology --- biology --- materials characterization --- shot-peening --- image processing --- TIG welding --- aluminum 6061-T6 --- special surfaces --- wettability --- superhydrophobic --- cell cultures --- anti-bio adhesion --- self-cleaning fabrics --- polyethylene granules --- low-pressure MW air plasma --- optical emission spectroscopy --- XPS --- laser cobalt catalytic probe --- Alloy 718 --- surface hardness --- surface residual stress --- grain size --- fretting failure --- corrosion --- antimicrobial film --- nisin --- physical properties --- plasma treatment polyvinyl alcohol --- surface characterization --- microhole-textured tool --- CaF2 --- micro-EDM --- tribological properties --- egg shell --- stearic acid --- modification --- particle characterization --- epoxy composites --- dynamic mechanical analysis --- adhesion effectiveness --- Poly(tetrafluoroethylene) --- Teflon --- plasma treatment --- zeta potential --- surface energy --- contact angle measurement --- lectin --- bovine serum albumin --- adsorption --- cellulose thin film --- polystyrene --- gold --- surface plasmon resonance spectroscopy --- silver nanoparticles --- laser ablation in liquids --- laser synthesis of colloidal nanoparticles solution --- nanoparticle-impregnated paper --- antimicrobial activity --- fiber fines --- sheet forming --- vacuum filtration --- pulse power --- electrical stimulation --- electric field --- mushroom --- L. edodes --- Lyophyllum deeastes Sing --- surface modification --- porous silicon --- silicon surface --- carbonization --- oxidation --- aluminum --- alloy --- duralumin --- etching --- surface texture --- porous-like --- adhesive bonding --- superhydrophobic --- porous silicon --- visible light assisted organosilanization --- solid state NMR --- XPS --- ToF-SIMS --- atmospheric pressure plasma jets --- plasma polymerization --- superhydrophobicity --- wetting --- biomaterial --- polymer --- plasma --- functionalization --- surface properties --- thrombosis --- hemocompatibility --- endothealization --- vascular graft --- biocompatibility --- endothelial cells --- surface properties --- nanostructuring --- functionalization --- grafting

Listing 1 - 10 of 10
Sort by
Narrow your search