Search results: Found 10

Listing 1 - 10 of 10
Sort by
Microbial Food Safety Along The Dairy Chain

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453122 Year: Pages: 148 DOI: 10.3389/978-2-88945-312-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Medicine (General) --- Nutrition and Food Sciences
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

The dairy chain is an integral part of global food supply, with dairy food products a staple component of recommended healthy diets. The dairy food chain from production through to the consumer is complex, with various opportunities for microbial contamination of ingredients or food product, and as such interventions are key to preventing or controlling such contamination. Dairy foods often include a microbial control step in their production such as pasteurization, but in some cases may not, as with raw milk cheeses. Microbial contamination may lead to a deterioration in food quality due to spoilage organisms, or may become a health risk to consumers should the contaminant be a pathogenic microorganism. As such food safety and food production are intrinsically linked. This Research Topic eBook includes submissions on issues relating to the microbiological integrity of the dairy food chain, such as the ecology of pathogenic and spoilage organisms through the dairy farm to fork paradigm, their significance to dairy foods and health, and genomic analysis of these microorganisms.

New edge of antibiotic development: antimicrobial peptides and corresponding resistance

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193011 Year: Pages: 144 DOI: 10.3389/978-2-88919-301-1 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Antimicrobial peptides, commonly isolated from several organisms, have been considered part of innate immune system and also as potential antimicrobial drugs. Besides its antimicrobial activity, some AMPs also have antifungal activity, inmmunomodulatory and antitumural activities. Lately not only nature has become a source of AMPs. Besides isolation of natural organisms, antimicrobial peptides might be improved or created using computational tools. This opens even more this so amazing field by creating infinite novel and remarkable possibilities. Overall the current issue highlights the relevance of such Research Topic with perspectives to develop entirely new molecules with vast application within health and agricultural field with higher affinity for its target with concomitant reduction of side effects.

How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450879 Year: Pages: 188 DOI: 10.3389/978-2-88945-087-9 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.

Filamentous Bacteriophage in Bio/Nano/Technology, Bacterial Pathogenesis and Ecology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450954 Year: Pages: 154 DOI: 10.3389/978-2-88945-095-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Filamentous phage (genus Inovirus) infect almost invariably Gram-negative bacteria. They are distinguished from all other bacteriophage not only by morphology, but also by the mode of their assembly, a secretion-like process that does not kill the host. “Classic” Escherichia coli filamentous phage Ff (f1, fd and M13) are used in display technology and bio/nano/technology, whereas filamentous phage in general have been put to use by their bacterial hosts for adaptation to environment, pathogenesis, biofilm formation, horizontal gene transfer and modulating genome stability. Many filamentous phage have a “symbiotic” life style that is often manifested by inability to form plaques, preventing their identification by standard phage-hunting techniques; while the absence or very low sequence conservation between phage infecting different species often complicates their identification through bioinformatics. Nevertheless, the number of discovered filamentous phage is increasing rapidly, along with realization of their significance. “Temperate” filamentous phage whose genomes are integrated into the bacterial chromosome of pathogenic bacteria often modulate virulence of the host. The Vibrio cholerae phage CTXf genome encodes cholera toxin, whereas many filamentous prophage influence virulence without encoding virulence factors. The nature of their effect on the bacterial pathogenicity and overall physiology is the next frontier in understanding intricate relationship between the filamentous phage and their hosts. Phage display has been widely used as a combinatorial technology of choice for discovery of therapeutic antibodies and peptide leads that have been applied in the vaccine design, diagnostics and drug development or targeting over the past thirty years. Virion proteins of filamentous phage are integral membrane proteins prior to assembly; hence they are ideal for display of bacterial surface and secreted proteins. The use of this technology at the scale of microbial community has potential to identify host-interacting proteins of uncultivable or low-represented community members. Recent applications of Ff filamentous phage extend into protein evolution, synthetic biology and nanotechnology. In many applications, phage serves as a monodisperse long-aspect nano-scaffold of well-defined shape. Chemical or chenetic modifications of this scaffold are used to introduce the necessary functionalities, such as fluorescent labels, ligands that target specific proteins, or peptides that promote formation of inorganic or organic nanostructures. We anticipate that the future holds development of new strategies for particle assembly, site-specific multi-functional modifications and improvement of existing modification strategies. These improvements will render the production of filamentous-phage-templated materials safe and affordable, allowing their applications outside of the laboratory.

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451357 Year: Pages: 170 DOI: 10.3389/978-2-88945-135-7 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coli O- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli, 2nd Edition

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454334 Year: Pages: 172 DOI: 10.3389/978-2-88945-433-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.

Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions

Author:
ISBN: 9783038979920 / 9783038979937 Year: Pages: 212 DOI: 10.3390/books978-3-03897-993-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.

Keywords

metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics

Biotechnological Applications of Phage and Phage-Derived Proteins

Authors: ---
ISBN: 9783039214419 / 9783039214426 Year: Pages: 236 DOI: 10.3390/books978-3-03921-442-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Phages have shown a high biotechnological potential with numerous applications. The advent of high-resolution microscopy techniques aligned with omic and molecular tools have revealed innovative phage features and enabled new processes that can be further exploited for biotechnological applications in a wide variety of fields. The high-quality original articles and reviews presented in this Special Issue demonstrate the incredible potential of phages and their derived proteins in a wide range of biotechnological applications for human benefit. Considering the emergence of amazing new available bioengineering tools and the high abundance of phages and the multitude of phage proteins yet to be discovered and studied, we believe that the upcoming years will present us with many more fascinating and new previously unimagined phage-based biotechnological applications.

Keywords

gene expression regulation --- molecular probe --- macromolecular interactions --- phage-host interaction --- bacteriophage --- endolysin --- Clostridium perfringens --- alpha-sheet --- cancerous tumors --- capsid dynamics --- drug delivery vehicles --- native gel electrophoresis --- neurodegenerative disease --- pathogenic viruses --- phage display --- landscape phage --- major coat protein --- nanomedicine --- diagnostics --- biosensors --- M13 bacteriophage --- biofilm --- porous structure --- filters --- self-assembly --- T7phage library --- sarcoidosis --- tuberculosis --- microarray --- immunoscreening --- R-type pyocin --- bacteriocin --- contractile injection systems --- Pseudomonas aeruginosa --- X-ray crystallography --- receptor-binding protein --- Shigella flexneri --- bacteriophage --- tailspike proteins --- O-antigen --- serotyping --- microtiter plate assay --- fluorescence sensor --- bacteriophages --- encapsulation --- niosomes --- transfersomes --- liposomes --- Staphylococcus aureus --- phage --- Enterococcus faecalis --- Streptococcus agalactiae --- culture enrichment --- bacteriophage --- diagnostics --- Listeria monocytogenes --- endolysin --- magnetic separation --- reporter phage --- endolysin --- Pal --- Cpl-1 --- safety --- toxicity --- immune response --- Streptococcus pneumoniae --- self-assembly --- nanotubular structures --- tail sheath protein --- bacteriophage vB_EcoM_FV3 --- Appelmans --- bacteriophage evolution --- bacteriophage recombination --- phage therapy --- Pseudomonas aeruginosa --- antibiotic resistance --- bacteriophages --- Myoviridae --- bacteriophage-derived lytic enzyme --- enzybiotics --- endolysin --- in vitro activity --- ESKAPE --- n/a

Isolation and Structure Elucidation of Bioactive Compounds (Dedicated to the memory of the late Professor Charles D. Hufford)

Authors: ---
ISBN: 9783038977803 9783038977810 Year: Pages: 276 DOI: 10.3390/books978-3-03897-781-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

We are very pleased to introduce the Book Version of our Special Issue in Molecules dedicated to the memory of the late Professor Dr. Charles D. Hufford. The issue has been a huge success, with 22 full-length peer-reviewed papers and a tribute by Professor Alice M.Clark. Authors, reviewers, and collaborators from many countries across the worldhave contributed to this endeavour, and we are truly grateful to all. This Special Issue isrepresentative of the broad impact that “Charlie” had on the field of bioactive naturalproducts. This Special Issue comprises papers from Professor Hufford’s former students,colleagues, and collaborators throughout the world who have utilized a wide array ofstate-of-the-art techniques to examine diverse natural sources to isolate and identify avariety of natural products with a wide spectrum of biological activities, including somenew microbial transformations and insights into bioactive molecules. Many new bioactive compounds are described and reported here for the first time. Bioactivities reportedinclude cytotoxicity, antimicrobial activity, anti-inflammatory activity, antileishmanialactivity, antitrypanosomal activity, antimalarial activity, analgesic activity, and beneficialliver activities, just to name a few. This Special Issue will undoubtedly have a lasting impact on the field of bioactive natural products, as exemplified by the career of Dr. Hufford.Lastly, without the timely and outstanding contributions from all of you, this Special Issue would not have been possible. We thank you all very much for your contributions and your time devoted to this Special Issue in memory of a special person. Finally, we express ourgratitude and thanks to the journal Molecules and their excellent team of expert reviewers for giving us the support and opportunity to make this Special Issue a huge success!

Keywords

fusidic acid --- Cunninghamella echinulata --- C-26-oxidation --- C-27-oxidation --- Morus alba L. --- aldose reductase inhibitor --- neuroprotective agent --- natural products --- Mitracarpus scaber Zucc. --- pentalogin --- anti-inflammatory --- MS/MS --- Il-8 --- Crinum amabile --- augustine N-oxide --- buphanisine N-oxide --- biological activities --- Cryptococcus neoformans --- cryptococcosis --- HepG2 --- Prosopis glandulosa --- prosopilosidine --- amphotericin B --- fluconazole --- resveratrol --- dietary supplement --- gastro-resistant --- microparticles --- obesity --- HPLC --- Jatropha pelargoniifolia --- alkaloids --- flavonoids --- coumarinolignans --- diterpenes --- anti-inflammatory --- analgesic --- antipyretic --- Cochlospermum vitifolium --- Cochlospermaceae --- flavonoids --- lignans --- aromatic compounds --- carotenoids --- sterols --- liver activity --- Arthrinium sp. --- chromone --- polyketide --- antioxidant activity --- Rubiaceae --- jenipapo --- HPLC-ESI-IT-MS/MS --- flavonoids glycosides --- Baccharis --- antimalarial activity --- antitrypanosomal activity --- insecticidal activity --- GC/MS --- DNA barcoding --- microscopy --- antibacterial --- channel catfish --- columnaris disease --- Flavobacterium columnare --- stilbenes --- muscadine --- pyranoanthocyanin --- anti-leishmanial activity --- Leishmania donovani --- maleimides --- cytotoxicity --- SAR --- phlorogluciniol --- acylphloroglucinol --- anti-inflammatory --- iNOS --- NF-?B --- endophytic fungi --- sesterterpene --- cytotoxic activity --- pancreatic cancer --- Stevia rebaudiana --- diterpene glycosides --- rebaudioside A isomers --- 13(S)-hydroxyatisenoic acid derivative --- iso-stevioside X-ray structure --- Litsea cubeba --- cytotoxicity --- isolation and elucidation --- lignans --- antimicrobial resistance --- multi-drug resistant (MDR) --- methicillin resistant Staphylococcus aureus (MRSA) --- Zingiber monatnum --- terpenes --- (E)-8(17),12-labdadiene-15,16-dial --- zerumbol --- microbial transformation --- hop prenylflavanone --- isoxanthohumol --- cardiomyogenesis --- factor VII --- factor X --- inflammation --- thrombosis --- vasculogenesis --- herbal medicine --- n/a --- Nemania --- Xylariaceae --- Torreya taxifolia --- plant pathogenic and endophytic fungi --- cytochalasins --- malaria --- cytotoxicity --- phytotoxicity --- acacetin 7-methyl ether --- acacetin --- monoamine oxidase-A --- monoamine oxidase-B --- molecular docking --- molecular dynamics --- neurological disorder --- Turnera diffusa

Modern Sample Preparation Approaches for Separation Science

Author:
ISBN: 9783039214112 / 9783039214129 Year: Pages: 282 DOI: 10.3390/books978-3-03921-412-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book will provide the most recent knowledge and advances in Sample Preparation Techniques for Separation Science. Everyone working in a laboratory must be familiar with the basis of these technologies, and they often involve elaborate and time-consuming procedures that can take up to 80% of the total analysis time. Sample preparation is an essential step in most of the analytical methods for environmental and biomedical analysis, since the target analytes are often not detected in their in-situ forms, or the results are distorted by interfering species. In the past decade, modern sample preparation techniques have aimed to comply with green analytical chemistry principles, leading to simplification, miniaturization, easy manipulation of the analytical devices, low costs, strong reduction or absence of toxic organic solvents, as well as low sample volume requirements.Modern Sample Preparation Approaches for Separation Science also provides an invaluable reference tool for analytical chemists in the chemical, biological, pharmaceutical, environmental, and forensic sciences.

Keywords

vitamins --- extraction --- determination --- review --- sample preparation --- matrix solid phase dispersion --- sorbent --- miniaturization --- on-line --- blueberry --- non-anthocyanin polyphenol --- vortex-assisted dispersive liquid-liquid microextraction --- response surface methodology --- desirability function approach --- nail --- curie temperature --- high-frequency heating --- liquid chromatography–tandem mass spectrometry --- caffeine --- amlodipine --- gas chromatography --- hydrogel --- hormones --- pectin --- polyvinyl alcohol --- sample preparation --- in-tube SPME --- UHPLC-MS/MS --- organic-based monoliths --- antipsychotics --- plasma samples --- schizophrenic’ patients --- salting-out assisted liquid–liquid extraction --- sugaring-out assisted liquid–liquid extraction --- hydrophobic-solvent assisted liquid–liquid extraction --- subzero-temperature assisted liquid–liquid extraction --- phenolic compounds --- sorbent-based techniques --- multi-spheres adsorptive micro-extraction (MSA?E) --- floating sampling technology --- caffeine and acetaminophen tracers --- environmental water matrices --- vortex-assisted dispersive liquid-liquid microextraction --- China herbal tea --- pesticides residue --- aflatoxins --- UPLC-MS/MS --- vortex-synchronized matrix solid-phase dispersion --- crab shells --- ionic liquids --- anthraquinones --- Cassiae Semen --- sample preparation --- nanocomposite --- pathogenic --- enrichment --- nucleic acid isolation --- sample preparation with TLC/HPTLC --- solvent front position extraction --- solvent delivery with a moving pipette --- automation --- LC–MS/MS --- environmental analysis --- whole water --- trace analysis --- SPE --- large volume --- in-line filter --- sand --- flow rate --- pharmaceuticals --- hormones --- pesticides --- space instrumentation --- liquid chromatography --- oligopeptides --- trapping system --- membrane-based microextraction --- barbiturates --- simultaneous determination --- whole blood --- urine --- liver --- sample preparation --- oxylipins --- protein precipitation --- liquid–liquid extraction --- solid-phase extraction --- biological samples --- chlorophenoxy acid herbicides --- HPLC --- hydrophobic in-tube solid-phase microextraction --- poly (OMA-co-TRIM) monolithic column --- rice grains --- gold --- sample preparation --- preconcentration --- geological samples

Listing 1 - 10 of 10
Sort by
Narrow your search