Search results: Found 2

Listing 1 - 2 of 2
Sort by
Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging and Disease

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198665 Year: Pages: 220 DOI: 10.3389/978-2-88919-866-5 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Adult stem cells are responsible for tissue regeneration and repair throughout life. Their quiescence or activation are tightly regulated by common signalling pathways that often recapitulate those happening during embryonic development, and thus it is important to understand their regulation not only in postnatal life, but also during foetal development. In this regard, skeletal muscle is an interesting tissue since it accounts for a large percentage of body mass (about 40%), it is highly amenable to intervention through exercise and it is also key in metabolic and physiological changes underlying frailty susceptibility in the elderly. While muscle-resident satellite cells are responsible for all myogenic activity in physiological conditions and become senescent in old age, other progenitor cells such as mesoangioblasts do seem to contribute to muscle regeneration and repair after tissue damage. Similarly, fibro-adipogenic precursor cells seem to be key in the aberrant response that fills up the space left from atrophied muscle mass and which ends up with a dysfunctional muscle having vast areas of fatty infiltration and fibrosis. The complex interplay between these stem/progenitor cell types and their niches in normal and pathological conditions throughout life are the subjects of intense investigation. This eBook highlights recent developments on the role of stem cells in skeletal muscle function, both in prenatal and postnatal life, and their regulation by transcriptional, post-transcriptional and epigenetic mechanisms. Additionally, it includes articles on interventions associated with exercise, pathological changes in neuromuscular diseases, and stem cell aging.

The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454105 Year: Pages: 174 DOI: 10.3389/978-2-88945-410-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology --- Biology --- Physiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Tissues and organs have, although sometimes limited, the capacity for endogenous repair, which is aimed to re-establish integrity and homeostasis. Tissue repair involves pro- and anti-inflammatory processes, new tissue formation and remodelling. Depending on the local microenvironment, tissue repair results either in scar tissue formation or in regeneration. The latter aims to recapitulate the original tissue structure and architecture with the proper functionality. Although some organisms (such as planarians) have a high regenerative capacity throughout the body, in humans this property is more restricted to a few organs and tissues. Regeneration in the adult is possible in particular through the existence of tissue-resident pools of stem/progenitor cells. In response to tissue damage, these cells are activated, they proliferate and migrate, and differentiate into mature cells. Angiogenesis and neovascularization play a crucial role in tissue repair. Besides providing with oxygen and nutrients, angiogenesis generates a vascular niche (VN) consisting of different blood-derived elements and endothelial cells surrounded by basement membrane as well as perivascular cells. The newly generated VN communicates with the local stem/progenitor cells and contributes to tissue repair. For example, platelets, macrophages, neutrophils, perivascular cells and other VN components actively participate in the repair of skin, bone, muscle, tendon, brain, spinal cord, etc. Despite these observations, the exact role of the VN in tissue repair and the underlying mechanisms are still unclear and are awaiting further evidence that, indeed, will be required for the development of regenerative therapies for the treatment of traumatic injuries as well as degenerative diseases.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2018 (1)

2016 (1)