Search results: Found 7

Listing 1 - 7 of 7
Sort by
3D Printed Microfluidic Devices

Authors: ---
ISBN: 9783038974673 / 9783038974680 Year: Pages: 211 DOI: 10.3390/books978-3-03897-468-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2019-01-10 09:24:00
License:

Loading...
Export citation

Choose an application

Abstract

3D printing has revolutionized the microfabrication prototyping workflow over the past few years. With the recent improvements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols as a promising alternative to the time consuming, costly and sophisticated traditional cleanroom fabrication. Microfluidic devices have enabled a wide range of biochemical and clinical applications, such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. Using 3D printing fabrication technologies, alteration of the design features is significantly easier than traditional fabrication, enabling agile iterative design and facilitating rapid prototyping. This can make microfluidic technology more accessible to researchers in various fields and accelerates innovation in the field of microfluidics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in 3D printing and its use for various biochemical and biomedical applications.

Photochemistry and Photophysics - Fundamentals to Applications

Authors: ---
ISBN: 9781789237832 9781789237849 Year: Pages: 224 DOI: 10.5772/intechopen.71810 Language: English
Publisher: IntechOpen
Subject: Chemistry (General)
Added to DOAB on : 2019-10-03 07:51:52

Loading...
Export citation

Choose an application

Abstract

Photochemistry and photophysics are as old as our planet Earth. Photosynthesis in plants and vision in our eyes are natural examples of their importance. This book entitled ""Photochemistry and Photophysics - Fundamentals to Applications"" presents various advanced topics that inherently utilize core concepts of photochemistry and photophysics. There are eleven chapters in this book, which are divided into four 'parts'. While the first and second parts contain chapters describing the fundamentals of photochemistry and photophysics, respectively, the third part is on computational photochemistry. The last part deals with applications of photochemistry and photophysics. The goal of this book is to familiarize both research scholars and postgraduate students with recent advances in this exciting field.

Photocatalysts - Applications and Attributes

Authors: ---
ISBN: 9781789854756 9781789854763 Year: Pages: 156 DOI: 10.5772/intechopen.75848 Language: English
Publisher: IntechOpen
Subject: Chemistry (General)
Added to DOAB on : 2019-10-03 07:51:52

Loading...
Export citation

Choose an application

Abstract

This book enlightens the type, chemical structure, and application of photo-catalysts. It covers the recent developments in photo-catalysts and their applications, particularly in photo-catalytic degradation of different organic pollutants, hydrogen production, etc. It provides a concise but complete coverage and overview of photocatalysts and their recent advances for a broad audience: beginners, graduate students, and specialists in both academic and industrial sectors.

Optogenetic Tools in the Molecular Spotlight

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198993 Year: Pages: 179 DOI: 10.3389/978-2-88919-899-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The rise of optogenetics as a standard technique to non-invasively probe and monitor biological function created an immense interest in the molecular function of photosensory proteins. These photoreceptors are usually protein/pigment complexes that translate light into biological information and have become essential tools in cell biology and neurobiology as their function is genetically encoded and can be conveniently delivered into a given cell. Like for fluorescent proteins that quickly became invaluable as genetically encodable reporters in microscopy and imaging, variants of photosensory proteins with customized sensitivity and functionality are nowadays in high demand. In this ebook we feature reviews and original research on molecular approaches from synthetic biology and molecular spectroscopy to computational molecular modelling that all aspire to elucidate the molecular prerequisites for the photosensory function of the given proteins. The principle property of changing activity of biological function simply by application of light is not only very attractive for cell biology, it also offers unique opportunities for molecular studies as excitation can be controlled with high time precision. Especially in spectroscopy the usually fully reversible photoactivation of photosensory proteins allows researchers to to perform time resolved studies with up to femtosecond resolution. In addition, functional variants can be investigated and quickly screened in common biochemical experiments. The insights that are obtained by the here presented various yet complementary methods will ultimately allow us write the script for a molecular movie from excitation of the protein by a photon to activation of its biological function. Such deep understanding does not only provide unique insights into the dynamics of protein function, it will also ultimately enable us to rationally design novel optogenetic tools to be used in cell biology and therapy.

Radiation-induced and oxidative DNA damages

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196609 Year: Pages: 93 DOI: 10.3389/978-2-88919-660-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

DNA stores and passes the genetic information of almost all living organisms. Its molecular structure and their intramolecular interactions are particularly suitable to maximize stability against oxidative stress and UV-light absorption. Yet the protection and repair strategies are still error-prone: DNA lesions are produced, including the most complex and highly mutagenic ones. An important threat to DNA stability comes from photosensitization, i.e. from the dramatic multiplication of radiation-induced defects mediated by the presence of organic or organometallic dyes compared to the direct exposure to UVA radiation. Moreover, the photo-induced production of singlet oxygen generates an extremely high oxidative stress on DNA that, in vivo, normally results in extended cellular apoptosis. Elucidating the processes leading to DNA damages, from the production of a simple radical entity to deleterious lesions, as well as the opportunities of repair by devoted enzymes, is a cornerstone towards the development of more efficient protection strategies. Sensitization and selective production of DNA lesions can also be exploited to induce the selective apoptosis of cancer cells upon exposition to radiation or to oxidative stress, for instance in the field of photodynamic therapy. The importance and relevance of the field is witnessed by the impressive amount of high-level papers dealing with this complex subject, and notably tackling the structural elucidation of DNA and DNA-drug adducts, the mechanisms of formation of DNA lesions (including the precise detection of the final lesion products), as well as the influence of the lesions on the DNA stability and dynamics and the consequences on the ease of repair. Due to the complexity of the field lying at the frontiers between chemistry, physics and biology, multidisciplinary strategies allying modeling and experience are needed. This topic aims at giving an extended overview of the current research in the domain, with fundamental contribution from the leading groups in the field of DNA reactivity, structural characterization, photo-chemistry and photo-physics, as well as repair mechanism. It will therefore be a fundamental guide for scientists wanting to address the field of DNA lesion and repair, but also more generally for researchers working in rational drug design or in the development of biomarkers and medical imaging techniques.

Electrochemical Surface Science: Basics and Applications

Authors: ---
ISBN: 9783039216420 / 9783039216437 Year: Pages: 398 DOI: 10.3390/books978-3-03921-643-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.

Keywords

electrosynthesis --- switchable surfaces --- alkoxyamine surfaces --- redox monolayers --- porphyrins --- self-assembly --- surface nanostructures --- in situ EC-STM --- metal-electrolyte interface --- potential-dependent structures --- combined non-covalent control --- ECALE --- CdS --- silver single crystals --- alkanthiols --- SAMs --- EQCM --- AES --- polypyrrole --- diazonium salts --- flexible ITO --- adhesion --- redox properties --- X-ray absorption spectroscopy --- energy dispersive --- quick-XAS --- FEXRAV --- free electron laser --- electrochemistry --- photoelectrochemistry --- photochemistry --- pump &amp --- probe --- oxygen evolution reaction --- water splitting --- iridium --- thin-films --- spin-coating --- model systems --- electrocatalysts --- oxygen evolution reaction --- iridium --- nickel --- electrodeposition --- model catalyst --- water oxidation --- CO oxidation --- DFT --- hydrogen adsorption --- Pt–Ru catalysts --- ordered mesoporous carbons --- graphitization --- CO oxidation --- methanol oxidation --- direct methanol fuel cells --- electrocatalysis --- catalysts --- methanol oxidation reaction --- graphene --- DMFC --- Pt --- SOFC --- cathode --- XAFS --- in situ --- cobalt oxide --- water oxidation --- photo-electrochemistry --- hydroxyl radical --- electro-oxidation --- Lead OPD --- surface alloy --- XPS --- UPS --- EF-PEEM --- ORR --- Platinum --- PVDF --- PEMFC --- in situ ambient pressure XPS --- hard X rays --- photoelectron simulations --- solid/liquid interface --- TiO2 --- APTES --- Cu(111) --- electrochemical interface --- in-situ X-ray diffraction --- carbon nanofiber --- porous fiber --- electrospinning --- mesopore --- micropore --- porogen --- ammonia activation --- surface area --- methanol oxidation --- platinum single crystals --- pH and concentration effects --- adsorbed OH --- reduced graphene oxide --- electrophoretic deposition --- surface chemistry --- click chemistry --- gold --- palladium --- bimetallic alloy --- carbon nanofibers (CNFs) --- cyclic voltammetry (CV) --- Surface Modification --- Blackening of Steel --- Magnetite --- Corrosion Protection --- Auger-Electron Spectroscopy --- Ordered mesoporous carbon --- nitrogen doping --- cobalt-based electrocatalyst --- bifunctional oxygen electrode --- solvothermal method --- underpotential deposition (upd) --- Au --- Pt --- Pd --- nanoparticles --- cyclic voltammetry --- electrocatalysis --- operando --- near ambient pressure XPS --- scanning photoelectron microscopy --- solid oxide fuel cells --- surface science --- electrodeposited alloys --- CO electro-oxidation --- Pt single-crystal electrodes --- potential cycling --- potential stepping --- surface reconstruction --- electrocatalysis --- oxygen reduction --- ORR --- gas diffusion electrode --- platinum --- fuel cells --- thin-films --- benchmarking --- mass transport --- formic acid oxidation --- Au nanocrystals --- Pd thin films --- electrocatalysis --- d-band theory --- polymer --- silicon nanoparticles --- EPR spectroscopy --- photoconversion --- n/a

Emergent Quantum Mechanics. David Bohm Centennial Perspectives

Authors: --- --- ---
ISBN: 9783038976165 Year: Pages: 544 DOI: 10.3390/books978-3-03897-617-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeper-level"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.

Keywords

quantum foundations --- nonlocality --- retrocausality --- Bell’s theorem --- Bohmian mechanics --- quantum theory --- surrealistic trajectories --- Bell inequality --- quantum mechanics --- generalized Lagrangian paths --- covariant quantum gravity --- emergent space-time --- Gaussian-like solutions --- entropy and time evolution --- resonances in quantum systems --- the Friedrichs model --- complex entropy. --- Bell’s theorem --- the causal arrow of time --- retrocausality --- superdeterminism --- toy-models --- quantum ontology --- sub-quantum dynamics --- micro-constituents --- emergent space-time --- emergent quantum gravity --- entropic gravity --- black hole thermodynamics --- Stern-Gerlach --- trajectories --- spin --- Bell theorem --- fractal geometry --- p-adic metric --- singular limit --- gravity --- conspiracy --- free will --- number theory --- quantum potential --- Feynman paths --- weak values --- Bohm theory --- no-hidden-variables theorems --- observables --- measurement problem --- Bohmian mechanics --- primitive ontology --- Retrocausation --- weak values --- Stochastic Electrodynamics --- quantum mechanics --- decoherence --- interpretations --- pilot-wave theory --- Bohmian mechanics --- Born rule statistics --- measurement problem --- quantum thermodynamics --- strong coupling --- operator thermodynamic functions --- quantum theory --- de Broglie–Bohm theory --- contextuality --- atom-surface scattering --- bohmian mechanics --- matter-wave optics --- diffraction --- vortical dynamics --- Schrödinger equation --- de Broglie–Bohm theory --- nonequilibrium thermodynamics --- zero-point field --- de Broglie–Bohm interpretation of quantum mechanics --- pilot wave --- interior-boundary condition --- ultraviolet divergence --- quantum field theory --- Aharonov–Bohm effect --- physical ontology --- nomology --- interpretation --- gauge freedom --- Canonical Presentation --- relational space --- relational interpretation of quantum mechanics --- measurement problem --- non-locality --- discrete calculus --- iterant --- commutator --- diffusion constant --- Levi-Civita connection --- curvature tensor --- constraints --- Kilmister equation --- Bianchi identity --- stochastic differential equations --- Monte Carlo simulations --- Burgers equation --- Langevin equation --- fractional velocity --- interpretations of quantum mechanics --- David Bohm --- mind–body problem --- quantum holism --- fundamental irreversibility --- space-time fluctuations --- spontaneous state reduction --- Poincaré recurrence --- symplectic camel --- quantum mechanics --- Hamiltonian --- molecule interference --- matter-waves --- metrology --- magnetic deflectometry --- photochemistry --- past of the photon --- Mach–Zehnder interferometer --- Dove prism --- photon trajectory --- weak measurement --- transition probability amplitude --- atomic metastable states --- Bell’s theorem --- Bohmian mechanics --- nonlocality --- many interacting worlds --- wavefunction nodes --- bouncing oil droplets --- stochastic quantum dynamics --- de Broglie–Bohm theory --- quantum non-equilibrium --- H-theorem --- ergodicity --- ontological quantum mechanics --- objective non-signaling constraint --- quantum inaccessibility --- epistemic agent --- emergent quantum state --- self-referential dynamics --- dynamical chaos --- computational irreducibility --- undecidable dynamics --- Turing incomputability --- quantum ontology --- nonlocality --- time-symmetry --- retrocausality --- quantum causality --- conscious agent --- emergent quantum mechanics --- Bohmian mechanics --- de Broglie-Bohm theory

Listing 1 - 7 of 7
Sort by
Narrow your search