Search results: Found 7

Listing 1 - 7 of 7
Sort by
Active and Passive Plasmonic Devices for Optical Communications

Author:
Book Series: Karlsruhe Series in Photonics and Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ) ISSN: 18651100 ISBN: 9783731504634 Year: Volume: 17 Pages: XII, 171 p. DOI: 10.5445/KSP/1000051316 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

A short introduction to the theory of surface plasmon polaritons (SPPs) is given. The application of the SPPs in on-chip signal processing is discussed. In particular, two concepts of plasmonic modulators are reported, wherein the SPPs are modulated by 40 Gbit/s electrical signals. Phase and Mach-Zehnder modulators employing the Pockels effect in electro-optic organic materials are discussed. A few micro-meter long SPP absorption modulator based on a thin layer of indium-tin-oxide is reported.

Plasmonics and its Applications

Author:
ISBN: 9783038979142 / 9783038979159 Year: Pages: 196 DOI: 10.3390/books978-3-03897-915-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Plasmonics is a rapidly developing field that combines fundamental research and applications ranging from areas such as physics to engineering, chemistry, biology, medicine, food sciences, and the environmental sciences. Plasmonics appeared in the 1950s with the discovery of surface plasmon polaritons. Plasmonics then went through a novel propulsion in the mid-1970s, when surface-enhanced Raman scattering was discovered. Nevertheless, it is in this last decade that a very significant explosion of plasmonics and its applications has occurred. Thus, this book provides a snapshot of the current advances in these various areas of plasmonics and its applications, such as engineering, sensing, surface-enhanced fluorescence, catalysis, and photovoltaic devices.

Silicon-Based Nanomaterials: Technology and Applications

Author:
ISBN: 9783039210428 / 9783039210435 Year: Pages: 94 DOI: 10.3390/books978-3-03921-043-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Silicon has been proven to be remarkably resilient as a commercial electronic material. The microelectronics industry has harnessed nanotechnology to continually push the performance limits of silicon devices and integrated circuits. Rather than shrinking its market share, silicon is displacing “competitor” semiconductors in domains such as high-frequency electronics and integrated photonics. There are strong business drivers underlying these trends; however, an important contribution is also being made by research groups worldwide, who are developing new configurations, designs, and applications of silicon-based nanoscale and nanostructured materials. This Special Issue features a selection of papers which illustrate recent advances in the preparation of chemically or physically engineered silicon-based nanostructures and their application in electronic, photonic, and mechanical systems.

Flexible Electronics: Fabrication and Ubiquitous Integration

Author:
ISBN: 9783038978282 / 9783038978299 Year: Pages: 160 DOI: 10.3390/books978-3-03897-829-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.

Selected Papers from the 9th Symposium on Micro-Nano Science and Technology on Micromachines

Authors: --- ---
ISBN: 9783039216963 / 9783039216970 Year: Pages: 170 DOI: 10.3390/books978-3-03921-697-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents selected papers from the 8th

Keywords

vibration-induced flow --- micro-pillar --- numerical analysis --- micro-PIV --- acoustofluidics --- microscale thermophoresis --- multiphase flow --- microfluidic channels --- nano/microparticle separation --- micro-electro-mechanical-systems (MEMS) technologies --- magneto-impedance sensor --- thin-film --- high frequency --- logarithmic amplifier --- nondestructive inspection --- microfluidics --- biofabrication --- adipose tissue --- lipolysis --- tactile display --- thermal tactile display --- thermal sensation --- thermal conductivity --- liquid metal --- flexible device --- stretchable electronic substrate --- kirigami structure --- mechanical metamaterials --- surface mounting --- flexible electronic device --- contact resistance --- contact pressure --- myoblast --- skeletal muscle --- core-shell hydrogel fiber --- cyclic stretch --- engineered muscle --- laser direct writing --- femtosecond laser --- glyoxylic acid Cu complex --- reduction --- Cu micropattern --- near-infrared --- spectroscopy --- surface plasmon resonance --- Schottky barrier --- grating --- Si --- connector --- artificial blood vessel --- medical device --- blood coagulation --- implant --- artificial kidney --- biocompatible --- 4D printing --- 3D printing --- stimuli-responsive hydrogel --- electrical impedance measurement --- three-dimensional cell culture --- adipocyte --- lipid droplet --- 3T3-L1 --- functional surface --- condensation --- molecular dynamics --- wettability --- nanoscale structure --- n/a

Sol-Gel Chemistry Applied to Materials Science

Author:
ISBN: 9783039213535 / 9783039213542 Year: Pages: 216 DOI: 10.3390/books978-3-03921-354-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Sol–gel technology is a contemporary advancement in science that requires taking a multidisciplinary approach with regard to its various applications. This book highlights some applications of the sol–gel technology, including protective coatings, catalysts, piezoelectric devices, wave guides, lenses, high-strength ceramics, superconductors, synthesis of nanoparticles, and insulating materials. In particular, for biotechnological applications, biomolecules or the incorporation of bioactive substances into the sol–gel matrix has been extensively studied and has been a challenge for many researchers. Some sol–gel materials are widely applied in light-emitting diodes, solar cells, sensing, catalysis, integration in photovoltaic devices, and more recently in biosensing, bioimaging, or medical diagnosis; others can be considered excellent drug delivery systems. The goal of an ideal drug delivery system is the prompt delivery of a therapeutic amount of the drug to the proper site in the body, where the desired drug concentration can be maintained. The interactions between drugs and the sol–gel system can affect the release rate. In conclusion, the sol–gel synthesis method offers mixing at the molecular level and is able to improve the chemical homogeneity of the resulting composite. This opens new doors not only regarding

Keywords

sol-gel method --- Fourier transform infrared spectroscopy (FTIR) analysis --- bioactivity --- biocompatibility --- sol–gel method --- organic-inorganic hybrids --- chlorogenic acid --- cytotoxicity --- biocompatibility --- silsesquioxanes --- thiol-ene click reaction --- in situ water production --- hydrophobic coatings --- cotton fabric --- paper --- NMR --- wettability --- sol-gel --- hollow sphere --- 1D structure --- sol-gel --- thin-disk laser --- Yb-doped glasses --- aluminosilicate glasses --- photoluminescence --- ultrasonic spray deposition --- tungsten oxide --- lithium lanthanum titanium oxide --- conformal coating --- Li-ion batteries --- sol-gel technique --- biomaterials --- cell proliferation --- cell cycle --- one transistor and one resistor (1T1R) --- organic thin-film transistor (OTFT) --- resistive random access memory (RRAM) --- sol-gel --- lithium-ion battery --- LiMnxFe(1?x)PO4 --- carbon coating --- pseudo-diffusion coefficient --- potential step voltammetry --- electrochemical impedance spectroscopy --- sol-gel --- oxyfluoride glass-ceramics --- nanocrystal --- optical properties --- sol-gel method --- SiO2–based hybrids --- poly(?-caprolactone) --- TG-DSC --- TG-FTIR --- X-ray diffraction analysis --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- organic–inorganic hybrid materials --- biomedical applications --- metal oxides --- multi-layer --- surface plasmon resonance --- optical sensors --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- hybrid materials --- biomedical applications

Surface Modification to Improve Properties of Materials

Author:
ISBN: 9783038977964 9783038977971 Year: Pages: 356 DOI: 10.3390/books978-3-03897-797-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.

Keywords

sulphur hexafluoride (SF6) plasma --- tetrafluoromethane (CF4) plasma --- polymer polyethylene terephthalate (PET) --- surface modification --- functionalization and wettability --- optical emission spectroscopy (OES) --- electronegativity --- PVD nanocomposite coatings --- aluminum die casting --- tool life --- tribological performance --- plasma surface modification --- polymer polypropylene --- neutral oxygen atom density --- initial surface functionalization --- food packaging --- wettability --- tantalum --- hardness --- gradient nanostructured layer --- grain size --- residual stress --- dry wear behavior --- surface texture --- surface treatment --- Ti6Al4V alloy --- tribology --- biology --- materials characterization --- shot-peening --- image processing --- TIG welding --- aluminum 6061-T6 --- special surfaces --- wettability --- superhydrophobic --- cell cultures --- anti-bio adhesion --- self-cleaning fabrics --- polyethylene granules --- low-pressure MW air plasma --- optical emission spectroscopy --- XPS --- laser cobalt catalytic probe --- Alloy 718 --- surface hardness --- surface residual stress --- grain size --- fretting failure --- corrosion --- antimicrobial film --- nisin --- physical properties --- plasma treatment polyvinyl alcohol --- surface characterization --- microhole-textured tool --- CaF2 --- micro-EDM --- tribological properties --- egg shell --- stearic acid --- modification --- particle characterization --- epoxy composites --- dynamic mechanical analysis --- adhesion effectiveness --- Poly(tetrafluoroethylene) --- Teflon --- plasma treatment --- zeta potential --- surface energy --- contact angle measurement --- lectin --- bovine serum albumin --- adsorption --- cellulose thin film --- polystyrene --- gold --- surface plasmon resonance spectroscopy --- silver nanoparticles --- laser ablation in liquids --- laser synthesis of colloidal nanoparticles solution --- nanoparticle-impregnated paper --- antimicrobial activity --- fiber fines --- sheet forming --- vacuum filtration --- pulse power --- electrical stimulation --- electric field --- mushroom --- L. edodes --- Lyophyllum deeastes Sing --- surface modification --- porous silicon --- silicon surface --- carbonization --- oxidation --- aluminum --- alloy --- duralumin --- etching --- surface texture --- porous-like --- adhesive bonding --- superhydrophobic --- porous silicon --- visible light assisted organosilanization --- solid state NMR --- XPS --- ToF-SIMS --- atmospheric pressure plasma jets --- plasma polymerization --- superhydrophobicity --- wetting --- biomaterial --- polymer --- plasma --- functionalization --- surface properties --- thrombosis --- hemocompatibility --- endothealization --- vascular graft --- biocompatibility --- endothelial cells --- surface properties --- nanostructuring --- functionalization --- grafting

Listing 1 - 7 of 7
Sort by
Narrow your search