Search results: Found 10

Listing 1 - 10 of 10
Sort by
Platelets as immune cells in physiology and immunopathology

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197408 Year: Pages: 111 DOI: 10.3389/978-2-88919-740-8 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Are platelets cells? (Not everyone agrees, since they are non-nucleate). And if platelets are cells - which all specialists consider at the time being - are they immune cells? The issue that platelets participate in immunity is no longer debated; however, the issue that they are key cells in immunity is challenged. It has even been proposed a couple of years ago that platelets can present antigen to T-lymphocytes by using their HLA class I molecules. No one has the same functional definition of platelets. The ‘Frontiers Research Topic’- coordinators’ own view is that platelets are primarily repairing cells, what they do in deploying tools of physiological inflammation. This function is better acknowledged as primary hemostasis, i.e. platelet adherence to injured or wounded vessels, followed by activation, aggregation, and constitution of the initial clot. Platelets would thus repair damaged vascular endothelium; so doing, as they patrol to detect damages, they sense danger along the vascular arborescence. As the latter is immense, platelets get close to tissues, which are not allowed to them under ‘physiological’ conditions but are readily accessible in pathology. Platelets are equipped with a variety of Pathogen Recognition Receptors such as TLRs; they have a complete signalosome, which is functional until the phosphorylation of NFkB; they have been proved to retro-transcribe RNA and synthesize de novo proteins; etc. Platelets participate to inflammation along the whole spectrum: from physiological (tissue repair, healing) to acute/severe inflammation (as can be seen in e.g. sepsis). In general, platelets engage complex interactions with most infectious pathogens. We propose there to cover those topics - from physiology to pathology, that put platelets within cells that not only take place in-, but also are key players of-, innate immunity. The relation of platelets with adaptive immunity is even more complex. Not everyone is convinced that platelets present antigens; however, platelets influence adaptive immunity since they have mutual interactions with Dendritic cells, Monocytes/Macrophages, and B-lymphocytes (the key players of antigen presentation); they also have mutual interactions with T-lymphocytes, though is issue is less clearly deciphered. We propose to also cover these topics - or to present the forum. There is another issue which is medically relevant - speaking of physiology/physiopathology-: this is fetal maternal incompatibility of platelet specific antigens (the HPA system) and the likely formation of maternal antibodies that often injure the newborn with risks of severe thrombocytopenia and intracranial hemorrhage. We propose an update on this issue as well. Last, platelets are very special because they can be directly therapeutic (by transfusion), even when being offered by a generous blood donor displaying given genetic and phenotypic parameters to a patient/recipient in need, who also display his/her own genetic and phenotypic parameters, which - for a large part - differ from the donor's ones. Besides immunization - via mechanisms probably close to the fetal maternal platelet incompatibility, but likely not similar -, transfusion has allowed the identification of the tremendous capacity of platelets to mediate inflammation: we propose to conclude the Topics with this item/forum.

Keywords

platelets --- Infection --- Inflammation --- immunity

The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454105 Year: Pages: 174 DOI: 10.3389/978-2-88945-410-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology --- Biology --- Physiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Tissues and organs have, although sometimes limited, the capacity for endogenous repair, which is aimed to re-establish integrity and homeostasis. Tissue repair involves pro- and anti-inflammatory processes, new tissue formation and remodelling. Depending on the local microenvironment, tissue repair results either in scar tissue formation or in regeneration. The latter aims to recapitulate the original tissue structure and architecture with the proper functionality. Although some organisms (such as planarians) have a high regenerative capacity throughout the body, in humans this property is more restricted to a few organs and tissues. Regeneration in the adult is possible in particular through the existence of tissue-resident pools of stem/progenitor cells. In response to tissue damage, these cells are activated, they proliferate and migrate, and differentiate into mature cells. Angiogenesis and neovascularization play a crucial role in tissue repair. Besides providing with oxygen and nutrients, angiogenesis generates a vascular niche (VN) consisting of different blood-derived elements and endothelial cells surrounded by basement membrane as well as perivascular cells. The newly generated VN communicates with the local stem/progenitor cells and contributes to tissue repair. For example, platelets, macrophages, neutrophils, perivascular cells and other VN components actively participate in the repair of skin, bone, muscle, tendon, brain, spinal cord, etc. Despite these observations, the exact role of the VN in tissue repair and the underlying mechanisms are still unclear and are awaiting further evidence that, indeed, will be required for the development of regenerative therapies for the treatment of traumatic injuries as well as degenerative diseases.

Vascular Inflammation in Systemic Autoimmunity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450909 Year: Pages: 148 DOI: 10.3389/978-2-88945-090-9 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Plasticity and dynamism characterize the immune system as a tissue-integrating network with defensive functions. Blood and lymphatic vessel trees constitute the most evident and intuitive physical platform for the development of the net of interactions between immune cells, body tissues and foreign agents. Moreover vessel repair and immune patrolling are intimately linked physiological functions with common evolutionary roots. Not surprisingly variable degrees of vascular inflammation are often detectable in the setting of systemic inflammation and autoimmunity, whereas research in the field of cardiovascular pathology is progressively converging towards the identification of a common inflammatory background. The definition of the role of vascular inflammation in causing, sustaining and/or predicting the development of systemic autoimmunity constitute a challenging, unexplored frontier towards the development of a new generation of treatments and a better patient care.

Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456208 Year: Pages: 118 DOI: 10.3389/978-2-88945-620-8 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

It is long known that many cells can shed extracellular vesicles, small membrane-enclosed cell fragments. Although the existence of extracellular vesicles has been recognized for many years, researchers are only beginning to understand their physiologic significance. Several recent studies have demonstrated that extracellular vesicles released from cells serve as a mode of cellular communication. They can carry diverse molecular payload (e.g. nucleic acids, bioactive lipids and proteins) to distal organs and recipient cells. Extracellular vesicles can be classified into three major groups: exosomes, microvesicles, and apoptotic bodies. All these types of extracellular vesicles can be found in a variety of biologic specimen and their numbers, distribution and composition may serve as biomarkers for various disorders, including cardiovascular disease. Although extracellular vesicle-mediated processes are currently best characterized in the fields of cancer biology and neurobiology, evidence is accumulating that extracellular vesicles play a key role in the pathophysiology of diabetes, thrombosis, inflammation and cardiovascular calcification.In this Research Topic, we invited review and methodological articles that advance our understanding of extracellular vesicle-related processes in vascular biology.

Soft and Hard Tissue Regeneration

Authors: ---
ISBN: 9783039283040 9783039283057 Year: Pages: 86 DOI: 10.3390/books978-3-03928-305-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Dentistry
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This special issue entitled “Soft and hard tissue regeneration” will cover both periodontal and implant therapies. Regenerative periodontal treatment goal is to restore functional periodontal support offering a valuable treatment alternative even for teeth with large periodontal destruction, which may be successfully treated and maintained in health for long periods. In most cases where teeth are extracted for periodontal reasons, implant therapy will demand large bone augmentation procedures. Lack of sufficient bone volume may prevent placement of dental implants. In extreme cases, large bone reconstruction is indispensable before implant placement can be performed. Although, most bone grafts are only able to fill and maintain a space, where bone regeneration can occur (“osseoconductive”), the ideal bone graft will also promote osseous regeneration (“osseoinductive”). Several bone augmentation procedures have been described, each, presenting advantages and shortcomings. Success of bone augmentation procedures depends on the presence of bone forming cells, primary wound closure over the augmented area, space creation and maintenance where bone can grow and proper angiogenesis of the grafted area. Factors that influence the choice of the surgical technique are the estimated duration of surgical procedure, its complexity, cost, total estimated length of procedure until the final rehabilitations may be installed and the surgeons’ experience. This special issue will have a definite clinical orientation, and be entirely dedicated to soft and hard tissue regenerative treatment alternatives, both in periodontal and implant therapy, discussing their rationale, indications and clinical procedures. Internationally renowned leading researchers and clinicians will contribute with articles in their field of expertize.

TRP Channels in Health and Disease

Author:
ISBN: 9783039210824 9783039210831 Year: Pages: 266 DOI: 10.3390/books978-3-03921-083-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

ion channel --- TRPC --- small molecules --- calcium --- chemical probes --- TRPV1 --- TRPV2 --- TRPV3 --- TRPV4 --- mucosal epithelium --- ulcerative colitis --- inflammatory bowel disease --- TRPM4 channel --- cardiovascular system --- physiology --- pathophysiology --- TRPC6 --- elementary immunology --- inflammation --- calcium --- sodium --- neutrophils --- lymphocytes --- endothelium --- platelets --- human medulla oblongata --- cuneate nucleus --- dorsal column nuclei --- TRPV1 --- calcitonin gene-related peptide --- substance P --- TRP channels --- calcium signaling --- salivary glands --- xerostomia --- radiation --- inflammation --- transient receptor potential channels --- TRPC3 pharmacology --- channel structure --- lipid mediators --- photochromic ligands --- transient receptor potential --- TRPC3 --- mGluR1 --- GABAB --- EPSC --- Purkinje cell --- cerebellum --- toxicology --- TRP channels --- organ toxicity --- chemicals --- pollutants --- chemosensor --- TRPM7 --- kinase --- inflammation --- lymphocytes --- calcium signalling --- SMAD --- TH17 --- hypersensitivity --- regulatory T cells --- thrombosis --- graft versus host disease --- 2D gel electrophoresis --- AP18 --- HEK293 --- HSP70 --- MALDI-TOF MS(/MS) --- nanoHPLC-ESI MS/MS --- proteomics --- sulfur mustard --- TRPA1 --- TRPC channels --- diacylglycerol --- TRPC4 --- TRPC5 --- NHERF --- TRP channel --- TRPY1 --- Saccharomyces cerevisiae --- calcium --- manganese --- oxidative stress --- ion channels --- overproduction --- production platform --- protein purification --- Saccharomyces cerevisiae --- sensors --- transient receptor potential (TRP) channels --- yeast --- adipose tissue --- bioavailable --- menthol --- topical --- TRPM8 --- n/a

Stem Cell and Biologic Scaffold Engineering

Author:
ISBN: 9783039214976 9783039214983 Year: Pages: 110 DOI: 10.3390/books978-3-03921-498-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.

Looking Forward to the Future of Heparin: New Sources, Developments and Applications

Authors: ---
ISBN: 9783038429494 9783038429500 Year: Pages: 282 DOI: 10.3390/books978-3-03842-950-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:28
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Looking Forward to the Future of Heparin: New Sources, Developments and Applications that was published in Molecules

Keywords

thrombin inhibition --- LMWH --- antithrombin --- heparin oligosaccharides --- ternary complex --- heparin --- hepcidin --- iron homeostasis --- anemia --- heparin-induced thrombocytopenia --- diagnosis --- functional assay --- platelets --- heparin --- heparan sulphate --- TGF-? --- bone morphogenetic protein (BMP) --- growth and differentiation factor (GDF) --- GDNF --- BMP antagonists --- noggin --- sclerostin --- gremlin --- heparin --- enoxaparin --- subarachnoid hemorrhage --- edema --- brain injury --- inflammation --- cisplatin --- low molecular weight heparin (LMWH) --- ovarian cancer --- resistance --- heparin --- glycosaminoglycans --- chondroitin sulfate --- perylene diimide dyes --- dermatan sulfate --- fluorescent probe --- Heparin Red --- assay --- dermatan sulfate --- human plasma --- heparin --- alginate --- sulfated alginate --- biomaterials --- heparin --- heparan sulfate --- serglycin --- proteoglycan --- recombinant expression --- bioreactor --- theranostics --- solid lipid nanoparticles --- iron oxide nanoparticles --- heparin coating --- intestinal lymphatic absorption --- heparin --- heparin process --- manufacturing methods --- industrial --- super paramagnetic iron oxide nanoparticles (SPION) --- hyaluronic acid (HA) --- bovine serum albumin (BSA) --- Fe3O4·DA-BSA/HA --- paclitaxel (PTX) --- magnetic resonance imaging (MRI) --- low-molecular-weight heparin --- dalteparin --- NMR --- LC-MS --- affinity chromatography --- danaparoid sodium --- low molecular weight glycosaminoglycans --- orthogonal multi-analytical methods --- sequence and compositional investigations --- component quantitative analysis --- heparin --- crude heparin --- NMR --- quantitative NMR --- PCA --- chemometric --- HSQC --- bovine heparin --- porcine heparin --- molecular weight --- size exclusion chromatography --- pharmacopeia --- Fondaparinux sodium --- extended physicochemical characterization --- qNMR --- single crystal X-ray structure --- reference standard --- iduronic acid conformation --- Arixtra® --- n/a --- n/a --- n/a

Blood-Derived Products for Tissue Repair/Regeneration

Authors: ---
ISBN: 9783039218608 9783039218615 Year: Pages: 178 DOI: 10.3390/books978-3-03921-861-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue on “Blood-Derived Products for Tissue Repair and Regeneration” reveals the evolution and diversity of platelet rich plasma (PRP) technologies, which includes experimental research on novel formulations, the creation of combination therapies, and the exploration of potential modifiers of PRPs, as well as efficacy of PRP therapies in clinical veterinary and human applications. Scientist and clinicians are now starting to develop different treatments based on their reinterpretation of the traditional roles of platelets and plasma, and the current Issue has provided a forum for sharing research and ways of understanding the associated medicinal benefits from different points of view. The research interest in this area has covered different medical disciplines, such as ophthalmology, dentistry, orthopedics, and sports medicine.

Keywords

platelets --- burns --- growth factors --- platelet rich plasma --- quantification --- articular cartilage --- cartilage repair --- redifferentiation --- collagen hydrogels --- biologics --- hyperacute serum --- platelet-rich plasma --- fibrosis --- myoblasts --- myofibroblasts --- myogenesis --- Platelet-Rich Plasma (PRP) --- Platelet-Poor Plasma (PPP) --- satellite cells --- skeletal muscle regeneration --- stem cell niche --- regenerative medicine --- hyperacute serum --- platelet-rich plasma --- blood derived products --- composition --- meniscus --- meniscus repair --- meniscus tear --- trephination --- platelet-rich plasma --- PRP --- chronic meniscal lesion --- horizontal meniscal tear --- periosteal sheet --- platelet-rich fibrin --- growth --- differentiation --- bone grafting material --- PRGF --- Carprofen --- dog --- fracture --- bone healing --- wrist osteoarthritis --- microfat --- platelet-rich plasma --- cell therapy --- adipose tissue --- PRP --- knee arthrosis --- growth factors --- autologous platelet concentrates --- bone defects --- bone grafting --- bone regeneration --- furcation defects --- periodontal defects --- periodontal regeneration --- periodontal surgery --- platelet-rich plasma --- platelet-rich fibrin --- plasma rich in growth factors --- tissue healing --- corneal epithelial defect --- cornea regeneration --- serum eye drops --- plasma rich plasma (PRP) --- serum derived from plasma rich in growth factors (s-PRGF) --- hyaluronic acid (NaHA) --- wound healing --- bone regeneration --- bone repair --- fibrin sealant --- biomaterial --- photobiomodulation therapy --- low-level laser therapy --- n/a

Novel Aspects of Lipoprotein Metabolism with Focus on Systemic Inflammation

Author:
ISBN: 9783039282142 9783039282159 Year: Pages: 248 DOI: 10.3390/books978-3-03928-215-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

With cardiometabolic diseases still topping the list of mortality causes and in facing the obesity and diabetes epidemic, there remains a great need to better understand the pathophysiological derangements underlying these conditions. During the past years, it has become increasingly appreciated that low grade systemic inflammation is a common hallmark of cardiometabolic disorders—not only concerning diabetes and atherosclerotic cardiovascular disease but also involving non-alcoholic fatty liver disease. Recently developed high-throughput laboratory techniques for lipidomics and metabolomics have enabled researchers to discern novel crosstalk pathways between lipid phenotypes and enhanced chronic inflammation. With this Special Issue of the Journal of Clinical Medicine, entitled “Novel Aspects of Lipoprotein Metabolism with a Focus on Systemic Inflammation”, researchers were invited to submit original papers and reviews on various topics, in particular, at the interface of lipid metabolism and inflammation.

Keywords

carbamoylation --- chronic kidney disease --- lipoproteins --- infrared spectroscopy --- Breast cancer --- cholesterol --- 27-hydroxycholesterol --- HDL --- LDL --- cholesterol-lowering therapies --- biomarker --- anti-apolipoprotein A-1 antibodies --- renal transplant recipient --- HDL function --- prognosis --- cholesterol --- acute coronary syndrome --- biomarkers --- anti-apolipoprotein A-I autoantibodies --- GRACE score --- C-statistics --- adipose tissue --- ANGPTL3 --- ANGPTL4 --- ANGPTL8 --- lipid metabolism --- cholesterol efflux capacity --- coronary artery calcium score --- obesity --- anti-apoA-1 IgG --- autoantibodies --- cardiovascular disease --- C-reactive protein --- HDL --- paraoxonase-1 --- cardiovascular disease --- myocardial infarction --- diabetic cardiomyopathy --- cytokines --- interleukin 1? --- inflammation --- CANTOS --- canakinumab --- retinol binding protein 4 --- retinol --- lipoprotein subfractions --- large VLDL --- small LDL --- Type 2 diabetes mellitus --- metabolic syndrome --- nuclear magnetic resonance spectroscopy --- betaine --- trimethylamine N-oxide related metabolites --- nuclear magnetic resonance spectroscopy --- type 2 diabetes mellitus --- anti-apolipoprotein A-1 IgG --- familial hypercholesterolemia --- cholesterol homeostasis --- foam cells --- miR-33a --- TLR2/4 --- passive diffusion --- microvesicles --- inflammation --- lipoproteins --- LDL cholesterol --- microparticles --- cardiovascular disease --- platelets --- endothelial cells --- leukocytes --- atherothrombosis --- HDL --- lipids --- inflammation --- atherosclerotic cardiovascular disease (ASCVD) --- cardiovascular events --- GlycA --- non-alcoholic fatty liver --- sodium intake --- insulin resistance --- fatty liver index --- hepatic steatosis index --- HOMA-IR --- gut microbiota --- lipoprotein metabolism --- metabolic disorder --- adiponectin --- free thiols --- nuclear magnetic resonance spectroscopy --- phospholipid transfer protein activity --- triglycerides --- type 2 diabetes mellitus --- large very low density lipoproteins --- ANGPTL8 --- visceral adipose tissue (VAT) --- obesity --- endothelial cells

Listing 1 - 10 of 10
Sort by
Narrow your search