Search results: Found 6

Listing 1 - 6 of 6
Sort by
Remote Sensing and Geosciences for Archaeology

Author:
ISBN: 9783038427636 9783038427644 Year: Pages: X, 436 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Archaeology --- Environmental Sciences
Added to DOAB on : 2018-04-27 11:48:55
License:

Loading...
Export citation

Choose an application

Abstract

This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage.Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly.Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications.

Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters

Authors: --- ---
ISBN: 9783039212392 / 9783039212408 Year: Pages: 334 DOI: 10.3390/books978-3-03921-240-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.

Keywords

conifer forest --- leaf area index --- smartphone-based method --- canopy gap fraction --- terrestrial laser scanning --- forest inventory --- density-based clustering --- forest aboveground biomass --- root biomass --- tree heights --- GLAS --- artificial neural network --- allometric scaling and resource limitation --- structure from motion (SfM) --- 3D point cloud --- remote sensing --- local maxima --- fixed tree window size --- managed temperate coniferous forests --- point cloud --- spectral information --- structure from motion (SfM) --- unmanned aerial vehicle (UAV) --- chlorophyll fluorescence (ChlF) --- drought --- Mediterranean --- photochemical reflectance index (PRI) --- photosynthesis --- R690/R630 --- recovery --- BAAPA --- remote sensing --- household survey --- forest --- farm types --- automated classification --- sampling design --- adaptive threshold --- over and understory cover --- LAI --- leaf area index --- EPIC --- simulation --- satellite --- MODIS --- biomass --- evaluation --- southern U.S. forests --- VIIRS --- leaf area index (LAI) --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- MODIS --- consistency --- uncertainty --- evaluation --- downscaling --- Pléiades imagery --- unmanned aerial vehicle --- stem volume estimation --- remote sensing --- clumping index --- leaf area index --- trunk --- terrestrial LiDAR --- HemiView --- forest above ground biomass (AGB) --- polarization coherence tomography (PCT) --- P-band PolInSAR --- tomographic profiles --- canopy closure --- global positioning system --- hemispherical sky-oriented photo --- signal attenuation --- geographic information system --- digital aerial photograph --- aboveground biomass --- leaf area index --- photogrammetric point cloud --- recursive feature elimination --- machine-learning --- forest degradation --- multisource remote sensing --- modelling aboveground biomass --- random forest --- Brazilian Amazon --- validation --- phenology --- NDVI --- LAI --- spectral analyses --- European beech --- altitude --- forests biomass --- remote sensing --- REDD+ --- random forest --- Tanzania --- RapidEye

3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

Authors: ---
ISBN: 9783039217823 / 9783039217830 Year: Pages: 188 DOI: 10.3390/books978-3-03921-783-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Ecology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed.

Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing

Authors: ---
ISBN: 9783039212156 / 9783039212163 Year: Pages: 438 DOI: 10.3390/books978-3-03921-216-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mechanical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.

Keywords

landslide --- bagging ensemble --- Logistic Model Trees --- GIS --- Vietnam --- colorization --- random forest regression --- grayscale aerial image --- change detection --- gully erosion --- environmental variables --- data mining techniques --- SCAI --- GIS --- mapping --- single-class data descriptors --- materia medica resource --- Panax notoginseng --- one-class classifiers --- geoherb --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- remote sensing image segmentation --- convolutional neural networks --- Gaofen-2 --- hybrid structure convolutional neural networks --- winter wheat spatial distribution --- classification-based learning --- real-time precise point positioning --- convergence time --- ionospheric delay constraints --- precise weighting --- landslide --- weights of evidence --- logistic regression --- random forest --- hybrid model --- traffic CO --- traffic CO prediction --- neural networks --- GIS --- land use/land cover (LULC) --- unmanned aerial vehicle --- texture --- gray-level co-occurrence matrix --- machine learning --- crop --- landslide susceptibility --- random forest --- boosted regression tree --- information gain --- landslide susceptibility map --- ALS point cloud --- multi-scale --- classification --- large scene --- coarse particle --- particulate matter 10 (PM10) --- landsat image --- machine learning --- support vector machine --- high-resolution --- optical remote sensing --- object detection --- deep learning --- transfer learning --- land subsidence --- Bayes net --- naïve Bayes --- logistic --- multilayer perceptron --- logit boost --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- leaf area index (LAI) --- machine learning --- Sentinel-2 --- sensitivity analysis --- training sample size --- spectral bands --- spatial sparse recovery --- constrained spatial smoothing --- spatial spline regression --- alternating direction method of multipliers --- landslide prediction --- machine learning --- neural networks --- model switching --- spatial predictive models --- predictive accuracy --- model assessment --- variable selection --- feature selection --- model validation --- spatial predictions --- reproducible research --- Qaidam Basin --- remote sensing --- TRMM --- artificial neural network --- n/a

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972709 Year: Volume: 1 Pages: 404 DOI: 10.3390/books978-3-03897-271-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972761 Year: Volume: 2 Pages: 404 DOI: 10.3390/books978-3-03897-277-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

eng (5)

english (1)


Year
From To Submit

2019 (5)

2018 (1)