Search results: Found 4

Listing 1 - 4 of 4
Sort by
Doubled haploidy in model and recalcitrant species

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197835 Year: Pages: 119 DOI: 10.3389/978-2-88919-783-5 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Doubled haploids (DHs) are powerful tools to reduce the time and costs needed to produce pure lines to be used in breeding programs. DHs are also useful for genetic mapping of complex qualitative traits, to avoid transgenic hemizygotes, for studies of linkage and estimation of recombination fractions, for screening of recessive mutants. These are just some of the advantages that make DH technology one of the most exciting fields of present and future plant biotechnology. All of the DH methods have model species where these technologies have been developed, or that respond every efficiently to their corresponding induction treatment. However, not all the species of economical/agronomical interest respond to these methodologies as they should be in order to obtain DHs on a routine basis. Indeed, many of them are still considered as low-responding or recalcitrant to these treatments, including many of the most important crops worldwide. Although many groups are making significant progresses in the understanding of these intriguing experimental pathways, little is known about the origin, causes and ways to overcome recalcitrancy. It would be very important to shed light on the particularities of recalcitrant species and the special conditions they need to be induced. In parallel, the knowledge gained from the study of basic aspects in model species could also be beneficial to overcome recalcitrancy. In this e-book, we present a compilation of different approaches leading to the generation of DHs in model and in recalcitrant species, and different studies on new and relevant aspects of this process, useful to extract common traits and features, to know better these processes, and eventually, to elucidate how to make DH technology more efficient.

Molecular and Cellular Plant Reproduction

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452118 Year: Pages: 302 DOI: 10.3389/978-2-88945-211-8 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Plant reproduction is essential not only for producing offspring but also for increasing crop quality and yield. Moreover, plant reproduction entails complex growth and developmental processes, which provide a variety of opportunities for elucidating fundamental principles in biology. The combinational employment of molecular genetic approaches and emerging technologies, such as florescence-based imaging techniques and next generation sequencing, has led to important progresses in plant reproduction using model plants, crops, and trees. This e-book compiles 31 articles, including 1 hypothesis and theory, 4 perspectives, 12 reviews, and 14 original research papers. We hope that this E-book will draw attention of all plant biologists to exciting advances in the field of plant reproduction and help solve remaining challenging questions in the future. We wish to express our appreciation to all the authors, reviewers, and the Frontiers editorial office for their excellent contributions that made the publication of this e-book possible.

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 / 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

The Long-Term Perspective of Human Impact on Landscape for Environmental Change and Sustainability

Authors: ---
ISBN: 9783039217960 / 9783039217977 Year: Pages: 258 DOI: 10.3390/books978-3-03921-797-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The research studies included in this Special Issue highlight the fundamental contribution of the knowledge of environmental history to conscious and efficient environment conservation and management. The long-term perspective of the dynamics that govern the human–climate ecosystem is becoming one of the main focuses of interest in biological and earth system sciences. Multidisciplinary bio-geo-archaeo investigations into the underlying processes of human impact on the landscape are crucial to envisage possible future scenarios of biosphere responses to global warming and biodiversity losses. This Special Issue seeks to engage an interdisciplinary dialog on the dynamic interactions between nature and society, focusing on long-term environmental data as an essential tool for better-informed landscape management decisions to achieve an equilibrium between conservation and sustainable resource exploitation.

Listing 1 - 4 of 4
Sort by
Narrow your search