Search results: Found 3

Listing 1 - 3 of 3
Sort by
Processing-Structure-Properties Relationships in Polymers

Author:
ISBN: 9783039218806 9783039218813 Year: Pages: 400 DOI: 10.3390/books978-3-03921-881-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This collection of research and review papers is aimed at depicting the state of the art on the possible correlations between processing variables, obtained structure and special properties which this structure induces on the plastic part. The extraordinary capacity of plastics to modify their properties according to a particular structure is evidenced for several transformation processes and for many applications. The final common goal is to take profit of this peculiar capacity of plastics by inducing, through a suitable processing, a specific spatial organization.

Keywords

carbon nanotube --- homogeneous dispersion --- ethylene vinyl acetate --- mechanical performance --- electrical conductivity --- microencapsulation --- melamine polyphosphate --- polyurethane --- composite --- flame retardant --- biodegradable nanofibers --- PLGA --- collagen --- epinephrine --- lidocaine --- polyimide film --- linear coefficient of thermal expansion (CTE) --- copper clad laminate --- structure and properties --- polymorphism --- isotactic polypropylene --- deformation --- phase transitions --- uniaxial compression --- uniaxial tensile deformation --- temperature --- in situ X-ray --- cavitation --- indentation --- Harmonix AFM --- polymer morphology --- mechanical properties --- ultra-high molecular weight polyethylene (UHMWPE) --- microcellular injection molding --- supercritical fluid --- supercritical N2 --- supercritical CO2 --- tissue engineering and regenerative medicine --- bioresorbable polymers --- 3D printing/additive manufacturing --- fused filament fabrication/fused deposition modelling --- degradation --- physicochemical characterization --- polycaprolactone --- layered double hydroxides --- ionic liquids --- PLA --- reactive blending --- biobased films --- graphene --- nanoreinforcement --- curing rate --- epoxy microstructure --- fatigue --- composites --- critical gel --- poly(lactic acid) --- carbon black --- graphite --- polymer blend --- poly(ethylene terephthalate) --- intrinsic viscosity --- polyolefin --- compatibilizer --- isotactic polypropylene --- stress-induced phase transitions --- structural analysis --- X-ray diffraction --- polyoxymethylene (POM) --- octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (GPOSS) --- composites --- morphology --- mechanical properties --- conductive filler --- orientation --- conductive polymer composites --- foam --- model --- PLLA --- bioresorbable vascular scaffolds --- stretch blow molding --- biaxial elongation --- SAXS --- WAXS --- microfibrillar composites --- crystalline morphology --- crystallinity --- mechanical properties --- crystallisation --- morphology --- nanoparticles --- shear --- flow --- orientation --- poly(?-caprolactone) --- polyvinyl butyral --- hydrophobicity --- contact angle --- polypropylene --- atomic force microscopy --- injection molding --- mold temperature evolution --- polycaprolactone --- ultra-high molecular weight polyethylene --- incremental forming --- SPIF --- XRD --- chain orientation --- temperature sensitive --- gel --- controllable gas permeability --- breathable film --- polymer composite --- processing --- polyamide 6 --- compression molding --- polymorphism --- polyamide 6 --- injection molding --- polymorphism --- humidity --- mechanical properties

Recent Development of Electrospinning for Drug Delivery

Authors: --- ---
ISBN: 9783039281404 9783039281411 Year: Pages: 206 DOI: 10.3390/books978-3-03928-141-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Several promising techniques have been developed to overcome the poor solubility and/or membrane permeability properties of new drug candidates, including different fiber formation methods. Electrospinning is one of the most commonly used spinning techniques for fiber formation, induced by the high voltage applied to the drug-loaded solution. With modifying the characteristics of the solution and the spinning parameters, the functionality-related properties of the formulated fibers can be finely tuned. The fiber properties (i.e., high specific surface area, porosity, and the possibility of controlling the crystalline–amorphous phase transitions of the loaded drugs) enable the improved rate and extent of solubility, causing a rapid onset of absorption. However, the enhanced molecular mobility of the amorphous drugs embedded into the fibers is also responsible for their physical–chemical instability. This Special Issue will address new developments in the area of electrospun nanofibers for drug delivery and wound healing applications, covering recent advantages and future directions in electrospun fiber formulations and scalability. Moreover, it serves to highlight and capture the contemporary progress in electrospinning techniques, with particular attention to the industrial feasibility of developing pharmaceutical dosage forms. All aspects of small molecule or biologics-loaded fibrous dosage forms, focusing on the processability, structures and functions, and stability issues, are included.

Keywords

electrospinning --- gentamicin sulfate --- polylactide-co-polycaprolactone --- drug release kinetics --- tissue engineering --- growth factor --- diabetic --- wound healing --- nanocomposite --- electrospinning --- coaxial spinning --- core-sheath nanofibers --- biomedical --- drug delivery --- electrospinning --- scale-up --- processability --- biopharmaceuticals --- oral dosage form --- grinding --- aceclofenac --- nanofiber --- electrospinning --- scanning electron microscopy --- fourier transform infrared spectroscopy --- differential scanning calorimetry --- nanotechnology --- biotechnology --- probiotics --- Lactobacillus --- Lactococcus --- electrospinning --- nanofibers --- drying --- local delivery --- viability --- antibacterial activity --- bacterial bioreporters --- drug release --- electrospinning --- microfibers --- nanofibers --- UV imaging --- wetting --- in situ drug release --- nanofibers --- electrospinning --- poorly water-soluble drug --- piroxicam --- hydroxypropyl methyl cellulose --- polydextrose --- scanning white light interferometry --- nanotechnology --- nanofibers --- traditional electrospinning --- ultrasound-enhanced electrospinning --- drug delivery system --- haemanthamine --- plant-origin alkaloid --- electrospinning --- amphiphilic nanofibers --- self-assembled liposomes --- physical solid-state properties --- drug release --- electrospinning --- PCL --- gelatin --- clove essential oil --- antibacterial --- biocompatibility --- artificial red blood cells --- electrospinning and electrospray --- pectin --- oligochitosan --- hydrogel --- microcapsules --- electrospinning --- wound dressings --- solvent casting --- 3D printing --- polymeric carrier --- n/a

Smart and Functional Polymers

Authors: --- ---
ISBN: 9783039215904 9783039215911 Year: Pages: 306 DOI: 10.3390/books978-3-03921-591-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book is based on the Special Issue of the journal Molecules on “Smart and Functional Polymers”. The collected research and review articles focus on the synthesis and characterization of advanced functional polymers, polymers with specific structures and performances, current improvements in advanced polymer-based materials for various applications, and the opportunities and challenges in the future. The topics cover the emerging synthesis and characterization technology of smart polymers, core?shell structure polymers, stimuli-responsive polymers, anhydrous electrorheological materials fabricated from conducting polymers, reversible polymerization systems, and biomedical polymers for drug delivery and disease theranostics. In summary, this book provides a comprehensive overview of the latest synthesis approaches, representative structures and performances, and various applications of smart and functional polymers. It will serve as a useful reference for all researchers and readers interested in polymer sciences and technologies.

Keywords

amphiphilicity --- phase change --- polyamino acids --- degradability --- fine-tuning --- pH responsive --- poly(methacrylamide)s --- phase transition --- catalyst --- CO2 --- heterogeneous catalysis --- molecular sieve --- polyether imidazole ionic liquid --- Vitamin E --- albumin --- core-shell nanoparticles --- paclitaxel --- multi-drug resistance --- breast cancer --- conducting polymer --- composite --- electrorheological --- smart fluid --- viscoelastic --- controlled polymerization --- reversible polymerization --- sustainable polymers --- pH responsive polymers --- nanomedicine --- tumor imaging --- drug delivery --- polymerization dispersion method --- polyaniline --- polyvinyl alcohol --- glutaraldehyde --- chemical activation --- Glycopolymer --- post-polymerization functionalization --- perfluoroaryl azides --- Staudinger reaction --- castor oil --- biomedical devices --- polyurethanes --- polycaprolactone-diol --- chitosan --- fluoropolymers --- melt-shear organization --- chemical resistance --- solvent responsiveness --- hydrophobicity --- core/shell particles --- emulsion polymerization --- particle processing --- ?-NaYF4 --- rare earth upconversion nanoparticles --- core–shell structure --- hydrogels --- applications --- targeted drug delivery --- drug release --- hydrophobic drug delivery --- clinical translation --- versatile platform --- administration routes --- diverse therapeutic areas --- hearing loss --- saffron --- endophytic exopolysaccharide --- gentamicin --- cochlear hair cell --- polymeric nanoparticles --- stimuli-sensitive polymers --- co-delivery systems --- synergistic effect --- nucleic acid delivery --- chemotherapy --- phenylboronic acid --- gel --- glucose sensitivity --- drug delivery --- diabetes therapy --- amphiphilic copolymer --- hydrolyzable polyurea --- micelle --- controlled drug delivery --- cancer chemotherapy --- polymerization or post-polymerization modification methods --- polymer-based supramolecular chemistry --- stimuli-responsive polymers --- shape memory polymers --- self-healing polymers --- polymers for industrial catalysis --- polymers for water or effluent treatment --- polymers for sensing, separation, and purification --- polymers for fabrication --- renewable polymer materials used for agriculture --- functional polymers used in food science --- polymers for information storage, electronics, and energy conversion --- functional polymers for diagnosis, imaging, drug delivery, and tissue engineering --- polymers with biological activity (e.g., antitumor, antidiabetic, and antimicrobial activity) --- polymer-based medical devices

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2020 (1)

2019 (2)