Search results: Found 2

Listing 1 - 2 of 2
Sort by
Microbial Exopolysaccharides: From Genes to Applications

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198436 Year: Pages: 161 DOI: 10.3389/978-2-88919-843-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Microbial polysaccharides represent an attractive alternative to those from plants or macro algae. They can be produced from renewable sources including lignocellulosic waste streams. Their production does not depend on geographical constraints and/or seasonal limitations. Additionally the manipulation of biosynthetic pathways to enhance productivity or to influence the chemi-cal polysaccharide composition is comparatively easy in bacteria. Microbial exopolysaccharides represents a valuable resource of biogenic and biodegradable polymers, suitable to replace petro based polymers in various technical applications. Furthermore, biocompatible exopolysaccha-rides are very attractive in medical applications, such as drug delivery systems, use as vaccines or nanoparticles. This research topic will depict the status quo, as well as the future needs in the field of EPS and biofilm research. Starting from the unexplored diversity of microbial polysaccharide producers to production processes and possibilities for modifications, to enhance the already high number of functionalities based on the chemical structures. An overview of the recent and future applications will be given, and the necessity in unravelling the biosynthesis of microbial exopolysaccharide producers is depicted, highlighting the future trend of tailor made polymers. Constraints in structure analysis of these highly complex biogenic polymers are described and different approaches to solve the restrictions in imaging and NMR analysis will be given. Therefore; this research topic comprises the whole process from genes to applications.

Polymer Clay Nano-composites

Author:
ISBN: 9783039216529 / 9783039216536 Year: Pages: 246 DOI: 10.3390/books978-3-03921-653-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue focuses on the current state-of-the-art of “Polymer Clay Nano-Composites” for biomedical, anticorrosion, antibacterial, and other applications. Clay–polymer composite nanomaterials represent an emerging area of research. Loading polymers with clay particles essentially enhances the composite strength features. Of particular interest are different nano-assembly methods, such as silane mono and multilayers, polyelectrolyte layer-by-layer assembly, and others. An important development was reached for tubular and fibrous clay nanoparticles, such as halloysite, sepiolite, and imogolite. Polymer clay nanoparticles can be prepared as sheets with 1-nm thickness and width of a few hundred nm (e.g., kaolin and montmorillonite). Fibrous clays significantly reinforce the nano-composites in the assembly with biopolymers and other green polymers, leading to functional hybrid bio nano-composites. The scope of this Special Issue comprehensively includes the synthesis and characterization of polymer clay nano-composites used for several applications, including nano-clay polymer composites and hybrid nano-assemblies.

Keywords

polyimide --- graphene oxide --- composite --- mechanical properties --- indentation recovery --- AFM --- carbon fibers --- surface grafting --- halloysite nanotubes --- polymer composites --- interface --- fish gelatin --- halloysite nanotubes --- glycerol --- mechanical properties --- water resistance --- LAP --- hyaluronic acid --- doxorubicin --- CD44 receptor targeted --- sacrificial bond --- ionic network --- organic montmorillonite --- 1,2-polybutadiene --- in-situ intercalation --- clay–polymer nanocomposites --- atrazine --- radical polymerization --- hexadecyltrimethylammonium bromide --- phenyltrimethylammonium chloride --- FTIR --- TGA --- adsorption --- dental resins --- nanocomposite materials --- organically modified clays --- montmorillonite --- intercalation --- nanotechnology --- ammonium persulfate --- fuzzy optimization --- N,N?-methylenebisacrylamide --- Pareto set --- polyacrylic acid --- swelling capacity --- variable cost --- polyethylene oxide --- montmorillonite clays --- Pd catalysis --- catalytic composite --- positron annihilation --- doubly functionalized montmorillonite --- polystyrene --- soap-free emulsion polymerization --- thermal stability --- tribological property --- organo-clays --- polyamines --- clay-amine interaction mechanisms --- structure effects --- la uptake and release --- layered silicate --- sericite --- CTAB --- intercalation stability --- nanocomposites --- gelation kinetics --- sol–gel transition --- water shutoff --- silica sol --- cellulose nanofibrils --- halloysite nanotubes --- supercritical CO2 --- polystyrene foam --- blowing agent --- in situ polymerization --- attapulgite/polypyrrole nanocomposite --- halloysite nanotubes --- polysaccharide --- interfacial interactions --- reinforcing --- adsorption --- dispersion --- coatings --- whey protein isolate --- nanocomposites --- nanoclay, barrier --- morphology --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search