Search results: Found 3

Listing 1 - 3 of 3
Sort by
Criticality as a signature of healthy neural systems: multi-scale experimental and computational studies

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195039 Year: Pages: 139 DOI: 10.3389/978-2-88919-503-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Since 2003, when spontaneous activity in cortical slices was first found to follow scale-free statistical distributions in size and duration, increasing experimental evidences and theoretical models have been reported in the literature supporting the emergence of evidence of scale invariance in the cortex. Although strongly debated, such results refer to many different in vitro and in vivo preparations (awake monkeys, anesthetized rats and cats, in vitro slices and dissociated cultures), suggesting that power law distributions and scale free correlations are a very general and robust feature of cortical activity that has been conserved across species as specific substrate for information storage, transmission and processing. Equally important is that the features reminiscent of scale invariance and criticality are observed at scale spanning from the level of interacting arrays of neurons all the way up to correlations across the entire brain. Thus, if we accept that the brain operates near a critical point, little is known about the causes and/or consequences of a loss of criticality and its relation with brain diseases (e.g. epilepsy). The study of how pathogenetical mechanisms are related to the critical/non-critical behavior of neuronal networks would likely provide new insights into the cellular and synaptic determinants of the emergence of critical-like dynamics and structures in neural systems. At the same time, the relation between the impaired behavior and the disruption of criticality would help clarify its role in normal brain function. The main objective of this Research Topic is to investigate the emergence/disruption of the emergent critical-like states in healthy/impaired neural systems.

Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Authors: ---
ISBN: 9783039211791 / 9783039211807 Year: Pages: 214 DOI: 10.3390/books978-3-03921-180-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.

Advances in Mechanical Problems of Functionally Graded Materials and Structures

Authors: --- --- ---
ISBN: 9783039216581 / 9783039216598 Year: Pages: 262 DOI: 10.3390/books978-3-03921-659-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.

Keywords

functionally graded beams --- different moduli in tension and compression --- bimodulus --- analytical solution --- neutral layer --- quadratic solid–shell elements --- finite elements --- functionally graded materials --- thin structures --- geometrically nonlinear analysis --- functionally graded piezoelectric materials --- circular plate --- combined mechanical loads --- electroelastic solution --- ANFIS --- fuzzy logic --- clustering --- neural networks --- robotics and contact wear --- evanescent wave --- polynomial approach --- functionally graded piezoelectric-piezomagnetic material --- dispersion --- attenuation --- functional graded saturated material --- inhomogeneity --- Love wave --- dispersion --- attenuation --- porous materials --- truncated conical sandwich shell --- metal foam core layer --- non-linear buckling analysis --- orthogonal stiffener --- elastic foundation --- functionally graded plate --- power-law distribution --- high order shear deformation theory --- elastic foundation --- stepped FG paraboloidal shell --- general edge conditions --- spring stiffness technique --- free vibration characteristics --- Lamb wave --- functionally graded viscoelastic material --- minimum module approximation method --- damping coefficient --- functionally graded materials --- finite element analysis --- graded finite elements --- functionally graded materials --- inhomogeneous composite materials --- material design --- stress concentration factor --- failure and damage --- elliptical hole --- finite element method --- hollow disc --- external pressure --- residual stress --- residual strain --- flow theory of plasticity --- functionally graded materials --- elastoplastic analysis --- pure bending --- residual stress --- large strain

Listing 1 - 3 of 3
Sort by
Narrow your search