Search results: Found 4

Listing 1 - 4 of 4
Sort by
Production process design using Multi-Criteria Analysis

Author:
ISBN: 3866440863 Year: Pages: X, 200 p. DOI: 10.5445/KSP/1000005289 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Intra- and inter-company production networks have gained increased importance in developed and industrialising countries. By reusing waste of industrial sites as a valuable input within the production network, material cycles can be closed and resource efficiency can be improved.In order to improve the performance of a production process, a detailed mapping of the mass and energy flows is the basis to understand which process characteristics are the main drivers for resource efficiency.The objective of this book is to develop an integrated multi-criteria decision support model for production process design.

Scalable Ontological EAI and e-Business Integration

Author:
ISBN: 9783866445215 Year: Pages: XVI, 209 p. DOI: 10.5445/KSP/1000018264 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

Integration of enterprise applications (EAI) and e-business integration are time-consuming and expensive. This thesis proposes pattern mining to determine identical object classes. Processes are integrated based on declared integration goals and known software behavior. A model-driven approach ensures consistent use of behavioral knowledge from development in integration. The contributions were applied to the CCTS Modeler Warp 10 and SAP NetWeaver CE (composition environment) developed at SAP.

Biofuels and Biochemicals Production

Author:
ISBN: 9783038425540 9783038425557 Year: Pages: 196 DOI: 10.3390/books978-3-03842-555-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-10 12:39:10
License:

Loading...
Export citation

Choose an application

Abstract

The high demand and depletion of petroleum reserves and the associated impact on the environment, together with volatility in the energy market price over the past three decades, have led to tremendous efforts in bio-based research activities, especially in biofuels and biochemicals. Most people associate petroleum with gasoline, however, approximately 6000 petroleum-derived products are available on the market today. Ironically, these petroleum-derived products have not elicited a high level of interest among the populace and media due, in part, to little awareness of the origins of these important products. Given the finite nature of petroleum, it is critical to devote substantial amounts of energy and resources on the development of renewable chemicals, as is currently done for fuels. Theoretically, the bioproduction of gasoline-like fuels and the 6000 petroleum-derived products are within the realm of possibility since our aquatic and terrestrial ecosystems contain abundant and diverse microorganisms capable of catalyzing unlimited numbers of reactions. Moreover, the fields of synthetic biology and metabolic engineering have evolved to the point that a wide range of microorganisms can be enticed or manipulated to catalyze foreign, or improve indigenous, biosynthetic reactions. To increase the concentration of products of interest and to ensure consistent productivity and yield, compatible fermentation processes must be used. Greater agricultural and chemical production during the past three decades, due in part to population increase and industrialization, has generated increasing levels of waste, which must be treated prior to discharge into waterways or wastewater treatment plants. Thus, in addition to the need to understand the physiology and metabolism of microbial catalysts of biotechnological significance, development of cost-effective fermentation strategies to produce biofuels and chemicals of interests while generating minimal waste, or better yet, converting waste into value-added products, is crucial. In this Special Issue, we invite authors to submit original research and review articles that increase our understanding of fermentation technology vis-à-vis production of liquid biofuels and biochemicals, and fermentation strategies that alleviate product toxicity to the fermenting microorganism while enhancing productivity. Further, original research articles and reviews focused on anaerobic digestion, production of gaseous biofuels, fermentation optimization using modelling and simulations, metabolic engineering, or development of tailor-made fermentation processes are welcome.

Modeling and Simulation of Energy Systems

Author:
ISBN: 9783039215188 / 9783039215195 Year: Pages: 496 DOI: 10.3390/books978-3-03921-519-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.

Keywords

cogeneration --- process integration --- solar energy --- thermal storage --- desalination --- optimization --- naphtha recovery unit --- statistical model --- simulation --- optimization --- concentrating solar thermal --- CST --- concentrating solar power --- CSP --- parabolic trough --- PTC --- thermal storage --- industrial process heat --- hybrid solar --- power plants --- supervisory control --- dynamic simulation --- dynamic optimization --- optimal control --- post-combustion CO2 capture --- energy efficiency --- time-varying operation --- shale gas condensate --- process synthesis and design --- shale gas condensate-to-heavier liquids --- technoeconomic analysis --- supercritical carbon dioxide --- recompression cycle --- combined cycle --- efficiency --- organic Rankine cycle --- exergy loss --- second law efficiency --- auto thermal reformer --- palladium membrane hydrogen separation --- polymer electrolyte membrane fuel cell (PEMFC) --- multi-loop control --- nonsmooth modeling --- process simulation --- DMR liquefaction processes --- fuel cost minimization problem --- FCMP --- piecewise-linear function generation --- linearization --- natural gas transportation --- compressor modeling --- compressibility factor --- isentropic exponent --- friction factor --- demand response --- energy management --- energy storage --- optimal battery operation --- battery degradation --- micro gas turbine --- modelling --- diagnostics, gas path analysis, analysis by synthesis --- circulating fluidized bed boiler --- refuse derived fuel --- waste to energy --- dynamic modeling --- process control --- dynamic modeling --- process control --- load-following --- supercritical pulverized coal (SCPC) --- cycling --- time-delay --- smith predictor --- energy systems --- modeling and simulation --- multi-scale systems engineering --- sustainable process design --- energy economics --- top-down models --- hybrid Life Cycle Assessment --- oil and gas --- offshore wind --- combined cycle --- hybrid system --- kriging --- multi-objective optimisation --- solar PV --- wind power --- life cycle analysis --- energy storage --- multiphase equilibrium --- RK-ASPEN --- methyl-oleate --- biodiesel --- supercritical CO2 --- WHENS --- work and heat integration --- building blocks --- superstructure --- MINLP --- absorption refrigeration --- H2O-LiBr working pair --- double-effect system --- cost optimization --- nonlinear mathematical programming --- Organic Rankine Cycle (ORC) --- geothermal energy --- binary cycle --- R245fa --- R123 --- mixture ratio --- Dieng --- Indonesia --- modeling --- simulation --- energy --- energy systems --- process systems engineering --- optimization --- process design --- operations

Listing 1 - 4 of 4
Sort by
Narrow your search