Search results:
Found 3
Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The aim of this work was the development of new image processing methods for the analysis and optimization of rotary kiln processes. It is shown how the newly developed methods can be employed to analyze certain areas and effects of rotary kiln processes. Thereby gained new process information can be used in the process control to optimize rotary kiln processes in terms of economic and environmental objectives.
Choose an application
This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.
NC-form grinding --- cutting edge --- contact conditions --- optics manufacturing --- precision grinding --- subsurface damages --- brittle hard materials --- grinding wheels --- materials --- bonding --- glass --- glass–ceramic --- laser --- fusion --- grinding --- centerless grinding --- process optimization --- safe operation --- quality --- productivity --- profile gear grinding --- grinding fluid --- grinding fluid nozzle --- jet breakup --- microgrinding --- sodium dodecyl sulfate --- metal cutting fluid --- microstructures --- micropencil grinding tools --- wear modelling --- self-sharpening --- high-performance dry grinding --- surface roughness --- grinding --- topography --- thermo-mechanical stress collective --- cutting edge --- contact conditions --- metal additive manufacturing --- mass finishing --- process optimization --- grinding --- processes --- wheels --- machines --- systems --- control --- removal rates --- precision --- sensors --- micro-grinding --- coolant --- lubrication --- coolant delivery
Choose an application
Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.
low-temperature co-fired ceramic (LTCC) --- capacitive accelerometer --- wireless --- process optimization --- performance characterization --- MEMS accelerometer --- mismatch of parasitic capacitance --- electrostatic stiffness --- high acceleration sensor --- piezoresistive effect --- MEMS --- micro machining --- turbulent kinetic energy dissipation rate --- probe --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- Taguchi method --- marine environmental monitoring --- accelerometer --- frequency --- acceleration --- heat convection --- motion analysis --- auto-encoder --- dance classification --- deep learning --- self-coaching --- wavelet packet --- classification of horse gaits --- MEMS sensors --- gait analysis --- rehabilitation assessment --- body sensor network --- MEMS accelerometer --- electromechanical delta-sigma --- built-in self-test --- in situ self-testing --- digital resonator --- accelerometer --- activity monitoring --- regularity of activity --- sleep time duration detection --- indoor positioning --- WiFi-RSSI radio map --- MEMS-IMU accelerometer --- zero-velocity update --- step detection --- stride length estimation --- field emission --- hybrid integrated --- vacuum microelectronic --- cathode tips array --- interface ASIC --- micro-electro-mechanical systems (MEMS) --- delaying mechanism --- safety and arming system --- accelerometer --- multi-axis sensing --- capacitive transduction --- inertial sensors --- three-axis accelerometer --- micromachining --- miniaturization --- stereo visual-inertial odometry --- fault tolerant --- hostile environment --- MEMS-IMU --- mode splitting --- Kerr noise --- angular-rate sensing --- whispering-gallery-mode --- optical microresonator --- three-axis acceleration sensor --- MEMS technology --- sensitivity --- L-shaped beam --- n/a
Listing 1 - 3 of 3 |
Sort by
|