Search results: Found 2

Listing 1 - 2 of 2
Sort by
Applications of Quantum Mechanical Techniques to Areas Outside of Quantum Mechanics

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454273 Year: Pages: 162 DOI: 10.3389/978-2-88945-427-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

This book deals with applications of quantum mechanical techniques to areas outside of quantum mechanics, so-called quantum-like modeling. Research in this area has grown over the last 15 years. But even already more than 50 years ago, the interaction between Physics Nobelist Pauli and the psychologist Carl Jung in the 1950's on seeking to find analogous uses of the complementarity principle from quantum mechanics in psychology needs noting. This book does NOT want to advance that society is quantum mechanical! The macroscopic world is manifestly not quantum mechanical. But this rules not out that one can use concepts and the mathematical apparatus from quantum physics in a macroscopic environment. A mainstay ingredient of quantum mechanics, is 'quantum probability' and this tool has been proven to be useful in the mathematical modelling of decision making. In the most basic experiment of quantum physics, the double slit experiment, it is known (from the works of A. Khrennikov) that the law of total probability is violated. It is now well documented that several decision making paradoxes in psychology and economics (such as the Ellsberg paradox) do exhibit this violation of the law of total probability. When data is collected with experiments which test 'non-rational' decision making behaviour, one can observe that such data often exhibits a complex non-commutative structure, which may be even more complex than if one considers the structure allied to the basic two slit experiment. The community exploring quantum-like models has tried to address how quantum probability can help in better explaining those paradoxes. Research has now been published in very high standing journals on resolving some of the paradoxes with the mathematics of quantum physics. The aim of this book is to collect the contributions of world's leading experts in quantum like modeling in decision making, psychology, cognition, economics, and finance.

Quantum Probability and Randomness

Authors: ---
ISBN: 9783038977148 9783038977155 Year: Pages: 276 DOI: 10.3390/books978-3-03897-715-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics—in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.

Keywords

quantum logic --- groups --- partially defined algebras --- quasigroups --- viable cultures --- quantum information theory --- bit commitment --- protocol --- entropy --- entanglement --- orthogonality --- quantum computation --- Gram–Schmidt process --- quantum probability --- potentiality --- complementarity --- uncertainty relations --- Copenhagen interpretation --- indefiniteness --- indeterminism --- causation --- randomness --- quantum information --- quantum dynamics --- entanglement --- algebra --- causality --- geometry --- probability --- quantum information theory --- realism --- reality --- entropy --- correlations --- qubits --- probability representation --- Bayes’ formula --- quantum entanglement --- three-qubit random states --- entanglement classes --- entanglement polytope --- anisotropic invariants --- quantum random number --- vacuum state --- maximization of quantum conditional min-entropy --- quantum logics --- quantum probability --- holistic semantics --- epistemic operations --- Bell inequalities --- algorithmic complexity --- Borel normality --- Bayesian inference --- model selection --- random numbers --- quantum-like models --- operational approach --- information interpretation of quantum theory --- social laser --- social energy --- quantum information field --- social atom --- Bose–Einstein statistics --- bandwagon effect --- social thermodynamics --- resonator of social laser --- master equation for socio-information excitations --- quantum contextuality --- Kochen–Specker sets --- MMP hypergraphs --- Greechie diagrams --- quantum foundations --- probability --- irreducible randomness --- random number generators --- quantum technology --- entanglement --- quantum-like models for social stochasticity --- contextuality

Listing 1 - 2 of 2
Sort by
Narrow your search