Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeperlevel"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de BroglieBohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeperlevel questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and nonclassical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
quantum foundations  nonlocality  retrocausality  Bell’s theorem  Bohmian mechanics  quantum theory  surrealistic trajectories  Bell inequality  quantum mechanics  generalized Lagrangian paths  covariant quantum gravity  emergent spacetime  Gaussianlike solutions  entropy and time evolution  resonances in quantum systems  the Friedrichs model  complex entropy.  Bell’s theorem  the causal arrow of time  retrocausality  superdeterminism  toymodels  quantum ontology  subquantum dynamics  microconstituents  emergent spacetime  emergent quantum gravity  entropic gravity  black hole thermodynamics  SternGerlach  trajectories  spin  Bell theorem  fractal geometry  padic metric  singular limit  gravity  conspiracy  free will  number theory  quantum potential  Feynman paths  weak values  Bohm theory  nohiddenvariables theorems  observables  measurement problem  Bohmian mechanics  primitive ontology  Retrocausation  weak values  Stochastic Electrodynamics  quantum mechanics  decoherence  interpretations  pilotwave theory  Bohmian mechanics  Born rule statistics  measurement problem  quantum thermodynamics  strong coupling  operator thermodynamic functions  quantum theory  de Broglie–Bohm theory  contextuality  atomsurface scattering  bohmian mechanics  matterwave optics  diffraction  vortical dynamics  Schrödinger equation  de Broglie–Bohm theory  nonequilibrium thermodynamics  zeropoint field  de Broglie–Bohm interpretation of quantum mechanics  pilot wave  interiorboundary condition  ultraviolet divergence  quantum field theory  Aharonov–Bohm effect  physical ontology  nomology  interpretation  gauge freedom  Canonical Presentation  relational space  relational interpretation of quantum mechanics  measurement problem  nonlocality  discrete calculus  iterant  commutator  diffusion constant  LeviCivita connection  curvature tensor  constraints  Kilmister equation  Bianchi identity  stochastic differential equations  Monte Carlo simulations  Burgers equation  Langevin equation  fractional velocity  interpretations of quantum mechanics  David Bohm  mind–body problem  quantum holism  fundamental irreversibility  spacetime fluctuations  spontaneous state reduction  Poincaré recurrence  symplectic camel  quantum mechanics  Hamiltonian  molecule interference  matterwaves  metrology  magnetic deflectometry  photochemistry  past of the photon  Mach–Zehnder interferometer  Dove prism  photon trajectory  weak measurement  transition probability amplitude  atomic metastable states  Bell’s theorem  Bohmian mechanics  nonlocality  many interacting worlds  wavefunction nodes  bouncing oil droplets  stochastic quantum dynamics  de Broglie–Bohm theory  quantum nonequilibrium  Htheorem  ergodicity  ontological quantum mechanics  objective nonsignaling constraint  quantum inaccessibility  epistemic agent  emergent quantum state  selfreferential dynamics  dynamical chaos  computational irreducibility  undecidable dynamics  Turing incomputability  quantum ontology  nonlocality  timesymmetry  retrocausality  quantum causality  conscious agent  emergent quantum mechanics  Bohmian mechanics  de BroglieBohm theory
Choose an application
This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as “spooky action at a distance” which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein–Podolsky–Rosen steering and quantum teleportation—a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solidstate quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations—from retrocausality to novel types of multipleworld theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein’s vision.
quantum nonlocality  quantum mechanics  Stern–Gerlach experiment  quantum measurement  pre and postselected systems  retrocausal channel  channel capacity  channel entropy  axioms for quantum theory  PR box  nonlocal correlations  classical limit  retrocausality  quantum correlations  quantum bounds  nonlocality  tsallis entropy  ion channels  selectivity filter  quantum mechanics  nonlinear Schrödinger model  biological quantum decoherence  nonlocality  parity measurements  entanglement  pigeonhole principle  controlledNOT  semiconductor nanodevices  quantum transport  densitymatrix formalism  Wignerfunction simulations  nonlocal dissipation models  steering  entropic uncertainty relation  general entropies  Bell’s theorem  Einstein–Podolsky–Rosen argument  local hidden variables  local realism  nosignalling  parallel lives  local polytope  quantum nonlocality  communication complexity  optimization  KS Box  PR Box  Noncontextuality inequality  discretevariable states  continuousvariable states  quantum teleportation of unknown qubit  hybrid entanglement  collapse of the quantum state  quantum nonlocality  communication complexity  quantum nonlocality  Bell test  deviceindependent  pvalue  hypothesis testing  nonsignaling  EPR steering  quantum correlation  nonlocality  entanglement  uncertainty relations  nonlocality  entanglement  quantum
Choose an application
Modern information communication technology eradicates barriers of geographic distances, making the world globally interdependent, but this spatial globalization has not eliminated cultural fragmentation. The Two Cultures of C.P. Snow (that of science–technology and that of humanities) are drifting apart even faster than before, and they themselves crumble into increasingly specialized domains. Disintegrated knowledge has become subservient to the competition in technological and economic race leading in the direction chosen not by the reason, intellect, and shared valuebased judgement, but rather by the whims of autocratic leaders or fashion controlled by marketers for the purposes of political or economic dominance. If we want to restore the authority of our best available knowledge and democratic values in guiding humanity, first we have to reintegrate scattered domains of human knowledge and values and offer an evolving and diverse vision of common reality unified by sound methodology. This collection of articles responds to the call from the journal Philosophies to build a new, networked world of knowledge with domain specialists from different disciplines interacting and connecting with other knowledgeandvaluesproducing and knowledgeandvaluesconsuming communities in an inclusive, extended, contemporary natural–philosophic manner. In this process of synthesis, scientific and philosophical investigations enrich each other—with sciences informing philosophies about the best current knowledge of the world, both natural and humanmade—while philosophies scrutinize the ontological, epistemological, and methodological foundations of sciences, providing scientists with questions and conceptual analyses. This is all directed at extending and deepening our existing comprehension of the world, including ourselves, both as humans and as societies, and humankind.
n/a  compositional hierarchy  development  dissipative structures  final cause  internalism  Second Law of thermodynamics  subsumptive hierarchy  agonism  apophasis  autocatalysis  centripetality  contingency  endogenous selection  heterogeneity  indeterminacy  process  mathematics  physics  philosophical foundations  natural philosophy  the logic of nature  ontology  epistemology  in the name of nature  philosophy of information  natural philosophy  metaphysics  physics  problem of induction  physicalism  theoretical unity  philosophy of science  scientific method  scientific progress  pessimistic induction  awareness  cognition  computation  cybernetics  differentiation  fitness  holographic encoding  memory  perception  quantum information  signal transduction  spatial representation  thermodynamics  unitarity  Leibniz  monad  internal quantum state  relational biology  reflexive psychology  self  induction  naturalism  evidence and justification  epistemic norms  induction and concept formation  induction and discovery of laws  natural philosophy  R.M. Unger  L. Smolin  Aristotle  F.W.J. Schelling  Naturphilosophie  A.N. Whitehead  Ivor Leclerc  dialectics  discourse  discursive space  information  knowledge  humanistic management  language  natural philosophy  subjective experience  process  dual aspects  consciousness  informationtheory  theoretical biology  1stperson and 3rdperson perspectives  hylomorphism  mind  form  matter  neurodynamics  natural philosophy  philosophy of science  Jungian psychology  depth psychology  analytical psychology  phenomenological psychology  evolutionary psychology  active imagination  Aristotle’s four causes  aesthetics in science  philosophy as a way of life  common good  contradiction  ethics  information  logic  naturalization  realism  science  synthesis  natural philosophy  philosophy of nature  naturalism  unity of knowledge  qualitative ontology  intentionality  dispositions  qualia  abduction  agentbased reasoning  creativity  ecocognitive model  ecocognitive openness  fallacies  errors of reasoning  thirdway reasoning  naturalization of logic  causality  embodiment  measurement  regulation  retrocausality  secondperson description  symmetry breaking  temporality  natural philosophy  cosmology  emptiness  vacuum  void  dark energy  space flight  exoplanet  big freeze  big crunch  everyday lifeworld  digitization  computability  complexity  reverse mathematics  quantum computing  real computing  theory of everything  acategoriality  statespace approach  mental representation  dualaspect monism  exceptional experiences  intentionality  mindmatter relations  category theory  memory evolutive system  emergence  emergentist reductionism  anticipation  creativity  infocomputational model
Listing 1  3 of 3 
Sort by

2019 (3)