Search results: Found 21

Listing 1 - 10 of 21 << page
of 3
>>
Sort by
Ethylene's Role in Plant Mineral Nutrition

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199464 Year: Pages: 151 DOI: 10.3389/978-2-88919-946-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Terrestrial plants are sessile organisms that, differently from animals, can not move in searching of the nutrients and water they need. Instead, they have to change continuously their physiology and morphology to adapt to the environmental changes. When plants suffer from a nutrient deficiency, they develop physiological and morphological responses (mainly in their roots) aimed to facilitate the acquisition and mobilization of such a nutrient. Physiological responses include some ones like acidification of the rizhosphere and release of chelating agents into the medium; and morphological responses include others, like changes in root architecture and development of root hairs. The regulation of these responses is not totally known but in the last years different plant hormones and signaling substances, such as auxin, ethylene, cytokinins and nitric oxide, have been involved in their control. Besides hormones, oxidative stress has also been related with most of the nutrient deficiencies. The relationship of ethylene with the regulation of responses to nutrient deficiencies came from the nineties, when some works presented data suggesting its involvement in the regulation of responses to Fe and P deficiency. In the last years, the role of ethylene has been extended to many other nutrient deficiencies, such as K deficiency, Mg deficiency, S deficiency, N deficiency, and others. In most of the cases, it has been found that ethylene production, as well as the expression of ethylene synthesis genes, increases under these nutrient deficiencies. Furthermore, it has also been found that ethylene controls the expression of genes related to responses to different deficiencies. The involvement of ethylene in so many deficiencies suggests that it should act in conjunction with other signals that would confer nutrient-specificity to the distinct nutrient responses. These other signals could be plant hormones (auxin, cytokinins, etc) as well as other substances (nitric oxide, microRNAs, peptides, glutathione, etc), either originated in the roots or coming from the shoots through the phloem. The role of ethylene in the mineral nutrition of plants is even more complex that the one related to its role in the responses to nutrient deficiencies. Ethylene has also been implicated in the N2 fixation of legume plants; in salt tolerance responses; and in responses to heavy metals, such as Cd toxicity. All these processes are related to ion uptake and, consequently, are related to plant mineral nutrition. We consider a good opportunity to review all this information in a coordinated way. This Research Topic will provide an overview about the role of the plant hormone ethylene on the regulation of physiological and morphological responses to different nutrient deficiencies. In addition, it will cover other aspects of ethylene related to plant nutrition such as its role on salinity, N2 fixation and tolerance to heavy metals.

Keywords

Boron --- ethylene --- heavy metals --- Iron --- Nitrogen --- nodulation --- Phosphate --- Potassium --- Salinity --- Sulfur

Forage Plant Ecophysiology

Author:
ISBN: 9783038424888 9783038424895 Year: Pages: XVI, 206 DOI: 10.3390/books978-3-03842-489-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General)
Added to DOAB on : 2017-08-17 13:01:36
License:

Loading...
Export citation

Choose an application

Abstract

Forage plant ecophysiology has been described, perhaps mischievously, as the selective application of useful information from pure plant physiology research to provide human benefit through improved agricultural output. The intention of creating this Special Issue was to create a volume that future researchers will find user friendly and want to consult, while ensuring it is rich in scientific quality. Contributions were sought that provide a broad geographic representation and a snapshot of present knowledge and research on a range of forage species in use around the world.

Plants; Stress & Proteins

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452675 Year: Pages: 323 DOI: 10.3389/978-2-88945-267-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Biotic and abiotic stress factors deliver a huge impact on plant life. Biotic stress factors such as damage through pathogens or herbivore attack, as well as abiotic stress factors like variation in temperature, rainfall and salinity, have placed the plant kingdom under constant challenges for survival. As a consequence, global agricultural and horticultural productivity has been disturbed to a large extent. Being sessile in nature, plants cannot escape from the stress, and instead adapt changes within their system to overcome the adverse conditions. These changes include physiological, developmental and biochemical alterations within the plant body which influences the genome, proteome and metabolome profiles of the plant. Since proteins are the ultimate players of cellular behavior, proteome level alterations during and recovery period of stress provide direct implications of plant responses towards stress factors. With current advancement of modern high-throughput technologies, much research has been carried out in this field. This e-book highlights the research and review articles that cover proteome level changes during the course or recovery period of various stress factors in plant life. Overall, the chapters in this e-book has provided a wealth of information on how plants deal with stress from a proteomics perspective.

Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453696 Year: Pages: 243 DOI: 10.3389/978-2-88945-369-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Life presumably arose in the primeval oceans with similar or even greater salinity than the present ocean, so the ancient cells were designed to withstand salinity. However, the immediate ancestors of land plants most likely lived in fresh, or slightly brackish, water. The fresh/brackish water origins might explain why many land plants, including some cereals, can withstand moderate salinity, but only 1 – 2 % of all the higher plant species were able to re-discover their saline origins again and survive at increased salinities close to that of seawater. From a practical side, salinity is among the major threats to agriculture, having been one of the reasons for the demise of the ancient Mesopotamian Sumer civilisation and in the present time causing huge annual economic losses of over 10 billion USD. The effects of salinity on plants include osmotic stress, disruption of membrane ion transport, direct toxicity of high cytoplasmic concentrations of sodium and chloride on cellular processes and induced oxidative stress. Ion transport is the crucial starting point that determines salinity tolerance in plants. Transport via membranes is mediated mostly by the ion channels and transporters, which ensure selective passage of specific ions. The molecular and structural diversity of these ion channels and transporters is amazing. Obtaining the detailed descriptions of distinct ion channels and transporters present in halophytes, marine algae and salt-tolerant fungi and then progressing to the cellular and the whole organism mechanisms, is one of the logical ways to understand high salinity tolerance. Transfer of the genes from halophytes to agricultural crops is a means to increase salt tolerance of the crops. The theoretical scientific approaches involve protein chemistry, structure-function relations of membrane proteins, synthetic biology, systems biology and physiology of stress and ion homeostasis. At the time of compiling this e-book many aspects of ion transport under salinity stress are not yet well understood. The e-book has attracted researchers in ion transport and salinity tolerance. We have combined our efforts to achieve a wider, more detailed understanding of salt tolerance in plants mediated by ion transport, to understand present and future ways to modify and manipulate ion transport and salinity tolerance and also to find natural limits for the modifications.

Sea Surface Salinity Remote Sensing

Authors: ---
ISBN: 9783039210763 9783039210770 Year: Pages: 296 DOI: 10.3390/books978-3-03921-077-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue gathers papers reporting research on various aspects of remote sensing of Sea Surface Salinity (SSS) and the use of satellite SSS in oceanography. It includes contributions presenting improvements in empirical or theoretical radiative transfer models; mitigation techniques of external interference such as RFI and land contamination; comparisons and validation of remote sensing products with in situ observations; retrieval techniques for improved coastal SSS monitoring, high latitude SSS and the assessment of ocean interactions with the cryosphere; and data fusion techniques combining SSS with sea surface temperature (SST). New instrument technology for the future of SSS remote sensing is also presented.

Keywords

sea surface salinity --- remote sensing --- mediterranean sea --- smos --- alboran sea --- data processing --- quality assessment --- MICAP --- forward model --- combined active/passive SSS retrieval algorithm --- different instrument configurations --- retrieval errors --- SMAP --- sea surface salinity --- Arctic Ocean --- sea ice --- river discharge --- Arctic Gateways --- sea surface salinity --- remote sensing --- aquarius --- SMAP --- retrieval algorithm --- calibration --- validation --- satellite salinity --- Gulf of Maine --- bias characteristics --- Scotian Shelf --- Aquarius satellite --- sea surface salinity --- Aquarius Validation Data System (AVDS) --- ocean salinity --- microwave remote sensing --- remote sensing --- sea surface salinity --- SMAP --- SMOS --- Gulf of Mexico --- validation --- coastal --- salinity --- upwelling --- sea surface salinity --- remote sensing --- Arctic ocean --- SMOS --- Arctic rivers --- data processing --- quality assessment --- Aquarius --- Argo --- Sea Surface Salinity --- Water Cycle Observation Mission (WCOM) --- interferometric microwave imager (IMI) --- one-dimensional (1D) aperture synthesis radiometer --- sea surface salinity (SSS) --- brightness temperature (TB) --- sea surface salinity --- microwave radiometry --- remote sensing --- calibration --- retrieval algorithm --- validation --- Aquarius --- SMOS --- SMAP --- sea surface temperature --- sea surface salinity --- SMOS --- retroflections --- surface velocity --- water transport --- salt transport --- n/a --- sea surface salinity --- ocean surface roughness --- microwave radiometry --- remote sensing --- forward model --- retrieval algorithm

Abiotic Stress Effects on Performance of Horticultural Crops

Authors: ---
ISBN: 9783039217502 9783039217519 Year: Volume: 1 Pages: 126 DOI: 10.3390/books978-3-03921-751-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2019-11-05 10:43:33
License:

Loading...
Export citation

Choose an application

Abstract

Horticultural crop yield and quality depend on genotype, environmental conditions, and production management. In particular, adverse environmental conditions may greatly affect crop performance, reducing crop yield by 50%–70%. Abiotic stresses such as cold, heat, drought, flooding, salinity, nutrient deficiency, and ultraviolet radiation affect multiple physiological and biochemical mechanisms in plants as they attempt to cope with the stress conditions. However, different crop species can have different sensitivities or tolerances to specific abiotic stresses. Tolerant plants may activate different strategies to adapt to or avoid the negative effect of abiotic stresses. At the physiological level, photosynthetic activity and light-use efficiency of plants may be modulated to enhance tolerance against the stress. At the biochemical level, several antioxidant systems may be activated, and many enzymes may produce stress-related metabolites to help avoid cellular damage, including compounds such as proline, glycine betaine, and amino acids. Within each crop species there is a wide variability of tolerance to abiotic stresses, and some wild relatives may carry useful traits for enhancing the tolerance to abiotic stresses in their progeny through either traditional or biotechnological breeding. The research papers and reviews presented in this book provide an update of the scientific knowledge of crop interactions with abiotic stresses.

Molecular Mechanisms and Genetics of Plant Resistance to Abiotic Stress

Authors: ---
ISBN: 9783039281220 9783039281237 Year: Pages: 152 DOI: 10.3390/books978-3-03928-123-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

We are currently experiencing a climate crisis that is associated with extreme weather events worldwide. Some of its most noticeable effects are increases in temperatures, droughts, and desertification. These effects are already making whole regions unsuitable for agriculture. Therefore, we urgently need global measures to mitigate the effects of climate breakdown as well as crop alternatives that are more stress-resilient. These crop alternatives can come from breeding new varieties of well-established crops, such as wheat and barley. They can also come from promoting underutilized crop species that are naturally tolerant to some stresses, such as quinoa. Either way, we need to gather more knowledge on how plants respond to stresses related to climate breakdown, such as heat, water-deficit, flooding high salinity, nitrogen, and heavy metal stress. This Special Issue provides a timely collection of recent advances in the understanding of plant responses to these stresses. This information will definitely be useful to the design of new strategies to prevent the loss of more cultivable land and to reclaim the land that has already been declared unsuitable.

Biotic and Abiotic Stress Responses in Crop Plants

Authors: ---
ISBN: 9783038974635 9783038974642 Year: Pages: 252 DOI: 10.3390/books978-3-03897-464-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Plant Sciences --- Genetics --- Biology
Added to DOAB on : 2019-01-16 10:24:11
License:

Loading...
Export citation

Choose an application

Abstract

While the demand for crop products continues to increase strongly, agricultural productivity is threatened by various stress factors, often associated with global warming. To sustain and improve yield, it is necessary to understand how plants respond to various stresses, and to use the generated knowledge in modern breeding programs. Most knowledge regarding the molecular mechanisms associated with stress responses has been obtained from investigations using the model plant Arabidopsis thaliana. Stress hormones, such as abscisic acid, jasmonic acid, and salicylic acid, have been shown to play key roles in defense responses against abiotic and biotic stresses. More recently, evidence that growth-regulating plant hormones are also involved in stress responses has been accumulating. Epigenetic regulation at the DNA and histone level, and gene regulation by small non-coding RNAs appear to be important as well. Many approaches have used mutant screens and next generation sequencing approaches to identify key players and mechanisms how plants respond to their environment. However, it is often unclear to which extent the elucidated mechanisms also operate in crops.This Special Issue Book, therefore, aims to close this gap and contains a number of contributions from labs that work both, on Arabidopsis and crops. The book includes contributions reporting how crop plant species respond to various abiotic stresses, such as drought, heat, cold, flooding, and salinity, as well as biotic stimuli during microbial infections. It contains reviews, opinions, perspectives, and original articles, and its focus is on our molecular understanding of biotic and abiotic stress responses in crops, highlighting, among other aspects, the role of stress hormones, secondary metabolites, signaling mechanisms, and changes in gene expression patterns and their regulation. Approaches and ideas to achieve stress tolerance and to maintain yield stability of agricultural crops during stress periods can be found in most chapters. These include also perspectives on how knowledge from model plants can be utilized to facilitate crop-plant breeding and biotechnology.

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Physiological Responses to Abiotic and Biotic Stress in Forest Trees

Authors: ---
ISBN: 9783039215140 9783039215157 Year: Pages: 294 DOI: 10.3390/books978-3-03921-515-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Keywords

drought --- mid-term --- non-structural carbohydrate --- soluble sugar --- starch --- Pinus massoniana --- salinity --- Carpinus betulus --- morphological indices --- gas exchange --- osmotic adjustment substances --- antioxidant enzyme activity --- ion relationships --- Populus simonii Carr. (poplar) --- intrinsic water-use efficiency --- tree rings --- basal area increment --- long-term drought --- hydrophilic polymers --- Stockosorb --- Luquasorb --- Konjac glucomannan --- photosynthesis --- ion relation --- Fagus sylvatica L. --- Abies alba Mill. --- N nutrition --- mixed stands --- pure stands --- soil N --- water relations --- 24-epiBL application --- salt stress --- ion contents --- chloroplast ultrastructure --- photosynthesis --- Robinia pseudoacacia L. --- elevation gradient --- forest type --- growth --- leaf properties --- Pinus koraiensis Sieb. et Zucc. --- Heterobasidion parviporum --- Heterobasidion annosum --- Norway spruce --- disturbance --- water availability --- pathogen --- infection --- Carpinus turczaninowii --- salinity treatments --- ecophysiology --- photosynthetic responses --- organic osmolytes --- ion homeostasis --- antioxidant enzymes --- glutaredoxin --- subcellular localization --- expression --- tapping panel dryness --- defense response --- rubber tree --- Ca2+ signal --- drought stress --- living cell --- Moso Bamboo (Phyllostachys edulis) --- plasma membrane Ca2+ channels --- signal network --- Aleppo pine --- Greece --- photosynthesis --- water potential --- ?13C --- sap flow --- canopy conductance --- climate --- molecular cloning --- functional analysis --- TCP --- DELLA --- GA-signaling pathway --- Fraxinus mandshurica Rupr. --- wood formation --- abiotic stress --- nutrition --- gene regulation --- tree --- bamboo forest --- cold stress --- physiological response --- silicon fertilization --- plant tolerance --- reactive oxygen species --- antioxidant activity --- proline --- Populus euphratica --- salt stress --- salicylic acid --- malondialdehyde --- differentially expressed genes --- n/a

Listing 1 - 10 of 21 << page
of 3
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (18)

Frontiers Media SA (3)


License

CC by-nc-nd (18)

CC by (3)


Language

english (19)

eng (2)


Year
From To Submit

2020 (3)

2019 (14)

2018 (1)

2017 (2)

2016 (1)