Search results: Found 19

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Reducing Dietary Sodium and Improving Human Health

Author:
ISBN: 9783038429258 9783038429265 Year: Pages: X, 390 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-05-18 15:50:08
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Nutrients, entitled “Reducing Dietary Sodium and Improving Human Health”, welcomes the submission of manuscripts either describing original research or reviewing scientific literature related to salt reduction. Manuscripts should focus on population interventions for reducing dietary sodium and we are particularly interested in innovative approaches to changing the food environment and/or consumer behaviour. Manuscripts that discuss theoretical models informing the design of interventions for reducing dietary sodium are also welcome, as are studies from low or lower middle income countries.Potential topics may include, but are not limited to: Development/evaluation of regional or national strategies to reduce population salt intake Methodological issues related to measuring salt consumption patterns Use of policy or legislative approaches to reduce salt consumption Design and/or assessment of impact of behavioural change programs Modelling of the impact of interventions on salt intake and health outcomes.

Spectroscopic ellipsometry of interfacial phase transitions in fluid metallic systems: KxKCl1-x and Ga1-xBix [online]

Author:
ISBN: 3937300082 Year: DOI: 10.5445/KSP/812004 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Chemistry (General)
Added to DOAB on : 2019-07-30 20:01:59

Loading...
Export citation

Choose an application

Abstract

The investigation of the interfacial phase transitions in fluid systems with short-range intermetallic interactions are of great interest. The phenomena were studied in two systems exhibiting a liquid-liquid miscibility gap: at the fluid/wall interface in fluid KxKCl1-x and at the fluid/vacuum interface of the Ga1 xBix alloys. To characterize the interfacial changes of the ultra thin films (composition, thickness and their evolution with time) the spectroscopic ellipsometry was performed over a wide spectral range. Whereas in the experiments on KxKCl1-x an existing ellipsometer could be used, a completely new UHV-apparatus including the in-situ phase modulation ellipsometer had to be developed for Ga1 xBix alloys. For the KxKCl1-x system new results on complete wetting at solid-liquid coexistence as well as in the homogenous liquid phase (prewetting) are presented. The spectra show the typical F center absorption which indicates that the film is a salt-rich phase. The thickness strongly increases approaching the monotectic from 30 to 440 nm, which is in agreement with the tetra point wetting scenario. For this interpretation a quantitative description of the excess Gibbs energy has been developed. For the Ga1 xBix system the results on complete wetting, surface freezing and oscillatory interfacial instabilities are presented. The high-precision spectra have been recorded approaching the liquid-liquid miscibility. These spectra have been modeled using a Ga-Bi effective medium approximation for the substrate covered by a film of liquid Bi. The measurements give evidence of tetra point wetting in the Ga-Bi system. First ellipsometric study of the surface freezing in Ga-Bi has been performed. Within the miscibility gap a very interesting effect of surface and bulk oscillatory instability was observed. The details of this process at present are not well understood, but a qualitative description is given.

Scholars, Travellers and Trade

Author:
ISBN: 9780203634547 9780415276306 9780415518550 9781134475278 9781134475261 9781134475223 Year: DOI: 10.4324/9780203634547 Language: English
Publisher: Taylor & Francis
Subject: History
Added to DOAB on : 2019-11-08 11:21:13
License:

Loading...
Export citation

Choose an application

Abstract

Today, the National Museum of Antiquities in Leiden is internationally known for its outstanding archaeological collections. Yet its origins lie in an insignificant assortment of artefacts used for study by Leiden University. How did this transformation come about? Ruurd Halbertsma has delved into the archives to show that the appointment of Caspar Reuvens as Professor of Archaeology in 1818 was the crucial turning point. He tells the dramatic story of Reuvens' struggle to establish the museum, with battles against rival scholars, red tape and the Dutch attitude of neglect towards archaeological monuments. This book throws new light on the process of creating a national museum, and the difficulties of convincing society of the value of the past.

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 / 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Abiotic Stresses in Agroecology: A Challenge for Whole Plant Physiology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452040 Year: Pages: 177 DOI: 10.3389/978-2-88945-204-0 Language: English
Publisher: Frontiers Media SA
Subject: Environmental Sciences --- Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Understanding plant responses to abiotic stresses is central to our ability to predict the impact of global change and environmental pollution on the production of food, feed and forestry. Besides increasing carbon dioxide concentration and rising global temperature, increasingly frequent and severe climatic events (e.g. extended droughts, heat waves, flooding) are expected in the coming decades. Additionally, pollution (e.g. heavy metals, gaseous pollutants such as ozone or sulfur dioxide) is an important factor in many regions, decreasing plant productivity and product quality. This Research topic focuses on stress responses at the level of whole plants, addressing biomass-related processes (development of the root system, root respiration/fermentation, leaf expansion, stomatal regulation, photosynthetic capacity, leaf senescence, yield) and interactions between organs (transport via xylem and phloem, long-distance signaling and secondary metabolites). Comparisons between species and between varieties of the same species are helpful to evaluate the potential for species selection and genetic improvement. This research topic is focused on the following abiotic stresses and interactions between them:- Increased carbon dioxide concentration in ambient air is an important parameter influenced by global change and affects photosynthesis, stomatal regulation, plant growth and finally yield.- Elevated temperature: both the steady rise in average temperature and extreme events of shorter duration (heat waves) must be considered in the context of alterations in carbon balance through increased photorespiration, decreased Rubisco activation and carboxylation efficiency, damage to photosynthetic apparatus, as well as loss of water via transpiration and stomatal sensitivity. - Low temperatures (late frosts, prolonged cold phases, freezing temperature) can decrease overwintering survival rates, productivity of crop plants and species composition in meadows.- Water availability: More frequent, severe and extended drought periods have been predicted by climate change models. The timing and duration of a drought period is crucial to determining plant responses, particularly if the drought event coincides with an increase in temperature. Drought causes stomatal closure, decreasing the cooling potential of transpiration and potentially leading to thermal stress as leaf temperature rises. Waterlogging may become also more relevant during the next decades and is especially important for seedlings and young plants. It is not the presence of water itself that causes the stress, but the exclusion of oxygen from the soil which causes a decrease in respiration and an increase in fermentation rates followed by a period of potential oxidative stress as water recedes.- Salinity: high salt concentration in soil influences soil water potential, the water status of the plant and hence affects productivity. Salt tolerance will become an important trait driven by increased competition for land and the need to exploit marginal lands.

Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453696 Year: Pages: 243 DOI: 10.3389/978-2-88945-369-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Life presumably arose in the primeval oceans with similar or even greater salinity than the present ocean, so the ancient cells were designed to withstand salinity. However, the immediate ancestors of land plants most likely lived in fresh, or slightly brackish, water. The fresh/brackish water origins might explain why many land plants, including some cereals, can withstand moderate salinity, but only 1 – 2 % of all the higher plant species were able to re-discover their saline origins again and survive at increased salinities close to that of seawater. From a practical side, salinity is among the major threats to agriculture, having been one of the reasons for the demise of the ancient Mesopotamian Sumer civilisation and in the present time causing huge annual economic losses of over 10 billion USD. The effects of salinity on plants include osmotic stress, disruption of membrane ion transport, direct toxicity of high cytoplasmic concentrations of sodium and chloride on cellular processes and induced oxidative stress. Ion transport is the crucial starting point that determines salinity tolerance in plants. Transport via membranes is mediated mostly by the ion channels and transporters, which ensure selective passage of specific ions. The molecular and structural diversity of these ion channels and transporters is amazing. Obtaining the detailed descriptions of distinct ion channels and transporters present in halophytes, marine algae and salt-tolerant fungi and then progressing to the cellular and the whole organism mechanisms, is one of the logical ways to understand high salinity tolerance. Transfer of the genes from halophytes to agricultural crops is a means to increase salt tolerance of the crops. The theoretical scientific approaches involve protein chemistry, structure-function relations of membrane proteins, synthetic biology, systems biology and physiology of stress and ion homeostasis. At the time of compiling this e-book many aspects of ion transport under salinity stress are not yet well understood. The e-book has attracted researchers in ion transport and salinity tolerance. We have combined our efforts to achieve a wider, more detailed understanding of salt tolerance in plants mediated by ion transport, to understand present and future ways to modify and manipulate ion transport and salinity tolerance and also to find natural limits for the modifications.

Optimizing Miscanthus for the Sustainable Bioeconomy: From Genes to Products

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455669 Year: Pages: 230 DOI: 10.3389/978-2-88945-566-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

In this Research Topic we report advances in fundamental and applied aspects of the perennial C4 bioenergy crop Miscanthus (Miscanthus spp.) and its role in mitigating climate change as part of the bioeconomy. Miscanthus is extremely well suited for bioenergy, biofuel and bioproduct production over a wide geographic area including Europe and North America as well as its native Asia.

Miscanthus offers a unique perspective within plant science: the challenge is to domesticate this novel crop for diverse environments and uses while simultaneously developing sustainable value chains to displace fossil fuels and contribute to climate change mitigation. Contributions to this Research Topic were offered from leading Miscanthus researchers from different parts of the world. We accepted 16 articles from 95 authors, which have generated 21,161 views at March 26 2018. Nine of the articles are the output of the European FP7 OPTIMISC project and describe multiple experiments investigating a common set of Miscanthus genotypes in Europe and Asia. These papers are complemented by seven additional articles from global authors, providing a comprehensive analysis of the state of the art of Miscanthus research and application.

Direct Radiative Effects of Sea Salt on the Regional Scale

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie ISSN: 01795619 ISBN: 9783866447738 Year: Volume: 53 Pages: V, 242 p. DOI: 10.5445/KSP/1000024937 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This thesis aims to quantify the direct radiative effects of sea salt aerosol in the atmosphere. The online coupled regional scale model system COSMO-ART is extended for this objective with respect to the sea salt aerosol. Furthermore, a new sea salt optical parameterisation is developed for both the shortwave and longwave spectrum. Based on numerical simulations with the extended model system, the direct radiative effects of sea salt aerosol are investigated.

Ionic Liquid Crystals

Author:
ISBN: 9783039210862 / 9783039210879 Year: Pages: 108 DOI: 10.3390/books978-3-03921-087-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.

Emerging Advances in Petrophysics. Porous Media Characterization and Modeling of Multiphase Flow

Authors: --- --- ---
ISBN: 9783038977940 9783038977957 Year: Pages: 258 DOI: 10.3390/books978-3-03897-795-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Geophysics and Geomagnetism
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Due to the influence of pore-throat size distribution, pore connectivity, and microscale fractures, the transport, distribution, and residual saturation of fluids in porous media are difficult to characterize. Petrophysical methods in natural porous media have attracted great attention in a variety of fields, especially in the oil and gas industry. A wide range of research studies have been conducted on the characterization of porous media covers and multiphase flow therein. Reliable approaches for characterizing microstructure and multiphase flow in porous media are crucial in many fields, including the characterization of residual water or oil in hydrocarbon reservoirs and the long-term storage of supercritical CO2 in geological formations. This book gathers together 15 recent works to emphasize fundamental innovations in the field and novel applications of petrophysics in unconventional reservoirs, including experimental studies, numerical modeling (fractal approach), and multiphase flow modeling/simulations. The relevant stakeholders of this book are authorities and service companies working in the petroleum, subsurface water resources, air and water pollution, environmental, and biomaterial sectors.

Keywords

Wilkins equation --- non-laminar flow --- turbulence modelling --- porous media --- oil tanker --- temperature drop --- oscillating motion --- numerical simulation --- soil-water characteristic curve --- initial void ratio --- air-entry value --- fractal dimension --- fractal model --- oil properties --- diffusion coefficient --- supercritical CO2 --- Peng-Robinson equation of state (PR EOS) --- CT --- digital rock --- microfractures --- Lattice Boltzmann method --- pore-scale simulations --- tight sandstone --- pore structure --- multifractal --- classification --- Ordos Basin --- loose media --- coal --- porosity --- true density --- bulk density --- overburden pressure --- particle size --- tight conglomerate --- fracture characterization and prediction --- fractal method --- salt rock --- creep --- damage --- fractional derivative --- acoustic emission --- marine gas hydrate --- submarine landslide --- greenhouse gas emission --- lifecycle management --- hazard prevention --- multilayer reservoir --- interlayer interference --- producing degree --- seepage resistance --- wellbore multiphase flow --- inclined angle --- liquid rate --- gas rate --- pressure drawdown model with new coefficients --- base-level cycle --- pore structure --- mouth bar sand body --- Huanghua Depression --- isotopic composition --- methane --- gas hydrate --- South China Sea --- Bakken Formation --- pore structure --- controlling factors --- low-temperature nitrogen adsorption --- petrophysics --- fractal porous media --- unconventional reservoirs --- multiphase flow

Listing 1 - 10 of 19 << page
of 2
>>
Sort by