Search results: Found 9

Listing 1 - 9 of 9
Sort by
Novel Biomaterials for Tissue Engineering 2018

Author:
ISBN: 9783038975434 / 9783038975441 Year: Pages: 426 DOI: 10.3390/books978-3-03897-544-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-02-05 10:26:51
License:

Loading...
Export citation

Choose an application

Abstract

The concept of regenerating tissues, with properties and functions that mimic natural tissues, has attracted significant attention in recent years. It provides potential solutions for treating many diseases and other healthcare issues. To fully realize the potential of the approach, it is crucial to have a rational biomaterial design to create novel scaffolds, and other materials systems suitable for tissue engineering, repair and regeneration. Research advances on the topic include the design of new biomaterials and their composites, the scaffold fabrication via subtractive and additive manufacturing approaches, the development of implantable scaffolds for disease monitoring, diagnostics, and treatment, as well as the understanding of cells–biomaterial scaffolds interaction. This Special Issue, “Novel Biomaterials for Tissue Engineering”, covers a selection of timely research activities in the field of biomaterials for tissue engineering and regeneration purposes. Promising findings on different approaches to design and develop new biomaterials, biomaterial systems and methods for tissue engineering, are presented and discussed. Recent advances in biofabrication techniques for tissue engineering are additionally demonstrated. The issue comprises a series of state-of-the-art experimental works, up-to-date review articles and commentaries.

Inorganic Biomaterials

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198016 Year: Pages: 149 DOI: 10.3389/978-2-88919-801-6 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Materials --- Biotechnology
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The intention of the editors A. R. Boccaccini and W. Höland has been to target this e-book to a broad readership and at the same time to present scientific contributions sufficiently detailed which discuss various specific fundamental aspects of inorganic biomaterials and their biomedical and dental applications. In this context, two large categories of biomaterials need to be mentioned, namely bioactive biomaterials for the replacement and regeneration of hard tissue and biocompatible, non-bioactive biomaterials for restorative dentistry. Both categories include products based on glasses or glass-ceramics as well as organic-inorganic composite materials. Among the bioactive products, BIOGLASS®, developed in the late 1960s by Prof. Dr. L. L. Hench, occupies a prominent position, being BIOGLASS® the first man-made material shown to form strong and functional bonding to leaving tissue. Sadly, Prof. Hench passed away in December 2015, at the time this e-book was being completed, it is therefore a great honor for the editors to dedicate this e-book to his memory. Indeed the book contains a comprehensive review written by Prof. Hench, in collaboration with Prof. J. R. Jones (UK), which provides a timely overview of the development and applications of bioactive glasses, including a discussion on the remaining challenges in the field. Further bioactive materials have been developed over the years by leading scientists such as Prof. Kokubo (Japan). These materials have also found their way into this book. The other contributions in this book, written by worldwide recognized experts in the field, present the latest advances in relevant areas such as scaffolds for bone tissue engineering, metallic ion releasing systems, cements, bioactive glass–polymer coatings, composites for bone regeneration, and effect of porosity on cellular response to bioceramics. In addition to bioactive materials, inorganic systems for restorative dentistry are also discussed in this e-book. Biomaterials for dental restorations consist of glassy or crystalline phases. Glass-ceramics represent a special group of inorganic biomaterials for dental restorations. Glass-ceramics are composed of at least one inorganic glassy phase and at least one crystalline phase. These products demonstrate a combination of properties, which include excellent aesthetics and the ability to mimic the optical properties of natural teeth, as well as high strength and toughness. They can be processed using special processing procedures, e.g. machining, moulding and sintering, to fabricate high quality products. The editors would like to extend their gratitude to the Frontiers team in Lausanne, Switzerland, for their outstanding dedication to make possible the publication of this e-book in a timely manner. It is our wish that the book will contribute to expand the field of inorganic biomaterials, both in terms of fundamental knowledge and applications, and that the book will be useful not only to established researchers but also to the increasing number of young scientists starting their careers in the field of inorganic biomaterials.

Novel Biocomposite Engineering and Bio-Applications

Author:
ISBN: 9783038973829 / 9783038973836 Year: Pages: 215 DOI: 10.3390/books978-3-03897-383-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2019-01-17 12:18:18
License:

Loading...
Export citation

Choose an application

Abstract

The engineering and utilization of biocomposites is a research field of major scientific and industrial interest worldwide. The biocomposite area is extensive and spans from structured and solid biocomposites (e.g., reinforced bioabsorbable polymers), films (e.g., antimicrobial barriers), to soft biocomposites (e.g., use of alginates, collagen and nanocellulose as components in bioinks for 3D bioprinting). Key aspects in this respect are the appropriate engineering and production of biomaterials, nanofibres, bioplastics, their functionalization enabling intelligent and active materials, processes for effective manufacturing of biocomposites and the corresponding characterization for understanding their properties.The current Special Issue emphasizes the bio-technological engineering of novel biomaterials and biocomposites, considering also important safety aspects in the production and use of bio- and nanomaterials.

Dental and Periodontal Tissues Formation and Regeneration: Current Approaches and Future Challenges

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199846 Year: Pages: 246 DOI: 10.3389/978-2-88919-984-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Sequential and reciprocal interactions between oral epithelial and cranial neural crest-derived mesenchymal cells give rise to the teeth and periodontium. Teeth are vital organs containing a rich number of blood vessels and nerve fibers within the dental pulp and periodontium. Teeth are composed by unique and specific collagenous (dentin, fibrillar cementum) and non-collagenous (enamel) highly mineralized extracellular matrices. Alveolar bone is another collagenous hard tissue that supports tooth stability and function through its close interaction with the periodontal ligament. Dental hard tissues are often damaged after infection or traumatic injuries that lead to the partial or complete destruction of the functional dental and supportive tissues. Well-established protocols are routinely used in dental clinics for the restoration or replacement of the damaged tooth and alveolar bone areas. Recent progress in the fields of cell biology, tissue engineering, and nanotechnology offers promising opportunities to repair damaged or missing dental tissues. Indeed, pulp and periodontal tissue regeneration is progressing rapidly with the application of stem cells, biodegradable scaffolds, and growth factors. Furthermore, methods that enable partial dental hard tissue repair and regeneration are being evaluated with variable degrees of success. However, these cell-based therapies are still incipient and many issues need to be addressed before any clinical application. The understanding of tooth and periodontal tissues formation would be beneficial for improving regenerative attempts in dental clinics. In the present e-book we have covered the various aspects dealing with dental and periodontal tissues physiology and regeneration in 6 chapters:1. General principles on the use of stem cells for regenerating craniofacial and dental tissues2. The roles of nerves, vessels and stem cell niches in tissue regeneration3. Dental pulp regeneration and mechanisms of various odontoblast functions4. Dental root and periodontal physiology, pathology and regeneration5. Physiology and regeneration of the bone using various scaffolds and stem cell populations6. Physiology, pathology and regeneration of enamel using dental epithelial stem cells

Monoclonal Antibodies

Author:
ISBN: 9783038428756 9783038428763 Year: Pages: X, 228 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2018-04-27 13:43:10
License:

Loading...
Export citation

Choose an application

Abstract

Monoclonal antibodies are established in clinical practice for the treatment of cancer, and autoimmune and infectious diseases. The first generation of antibodies has been dominated by classical IgG antibodies, however, in the last decade, the field has advanced, and, nowadays, a large proportion of antibodies in development have been engineered. This Special Issue on "Monoclonal Antibodies" includes original manuscripts and reviews covering various aspects related to the discovery, analytical characterization, manufacturing and development of therapeutic and engineered antibodies.

Advance of Polymers Applied to Biomedical Applications: Cell Scaffolds

Authors: ---
ISBN: 9783038970330 9783038970347 Year: Pages: 406 DOI: 10.3390/books978-3-03897-034-7 Language: englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-09-04 13:51:22
License:

Loading...
Export citation

Choose an application

Abstract

Since Langer’s seminal work, polymers have been on every corner of tissue engineering. The roles of bioresorbable polymers, as a scaffold, are not merely structural, providing three-dimensional (3D) homing sites to cells, but also functional at their interface with the cells. The polymeric scaffolds actively act as both biochemical and physical cues for cell behaviors, such as adhesion, growth, proliferation, and differentiation. Polymers and cells could interact further with each other mutually, sensing and responding to the signals from the partner. Technological advances in this direction, including chemical modification of polymer scaffolds, highly cytocompatible hybrid materials/composites, dynamic scaffolds, control of juxtacrine interactions, and 3D bioprinting and microfluidic devices, ensure the advances in polymers as cell scaffolds. The detection and characterization methods for cell-material interactions and cell behaviors have been greatly improved, and new characterization techniques have emerged. Recent years have witnessed a quantum leap of progress in tissue engineering and regenerative medicine, and this edited book illustrates some of the advances in polymers as cell scaffolds.

Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199211 Year: Pages: 130 DOI: 10.3389/978-2-88919-921-1 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The discipline of Synthetic Biology has recently emerged at the interface of biology and engineering. The definition of Synthetic Biology has been dynamic over time ever since, which exemplifies that the field is rapidly moving and comprises a broad range of research areas. In the frame of this Research Topic, we focus on Synthetic Biology approaches that aim at rearranging biological parts/ entities in order to generate novel biochemical functions with inherent metabolic activity. This Research Topic encompasses Pathway Engineering in living systems as well as the in vitro assembly of biomolecules into nano- and microscale bioreactors. Both, the engineering of metabolic pathways in vivo, as well as the conceptualization of bioreactors in vitro, require rational design of assembled synthetic pathways and depend on careful selection of individual biological functions and their optimization. Mathematical modelling has proven to be a powerful tool in predicting metabolic flux in living and artificial systems, although modelling approaches have to cope with a limitation in experimentally verified, reliable input variables. This Research Topic puts special emphasis on the vital role of modelling approaches for Synthetic Biology, i.e. the predictive power of mathematical simulations for (i) the manipulation of existing pathways and (ii) the establishment of novel pathways in vivo as well as (iii) the translation of model predictions into the design of synthetic assemblies.

Advances in Chitin/Chitosan Characterization and Applications

Authors: ---
ISBN: 9783038978022 9783038978039 Year: Pages: 414 DOI: 10.3390/books978-3-03897-803-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Functional advanced biopolymers have received far less attention than renewable biomass (cellulose, rubber, etc.) used for energy production. Among the most advanced biopolymers known is chitosan. The term chitosan refers to a family of polysaccharides obtained by partial de-N-acetylation from chitin, one of the most abundant renewable resources in the biosphere. Chitosan has been firmly established as having unique material properties as well as biological activities. Either in its native form or as a chemical derivative, chitosan is amenable to being processed—typically under mild conditions—into soft materials such as hydrogels, colloidal nanoparticles, or nanofibers. Given its multiple biological properties, including biodegradability, antimicrobial effects, gene transfectability, and metal adsorption—to name but a few—chitosan is regarded as a widely versatile building block in various sectors (e.g., agriculture, food, cosmetics, pharmacy) and for various applications (medical devices, metal adsorption, catalysis, etc.). This Special Issue presents an updated account addressing some of the major applications, including also chemical and enzymatic modifications of oligos and polymers. A better understanding of the properties that underpin the use of chitin and chitosan in different fields is key for boosting their more extensive industrial utilization, as well as to aid regulatory agencies in establishing specifications, guidelines, and standards for the different types of products and applications.

Keywords

aerogels --- chitosan --- ionic liquids --- ionogels --- zinc–chitosan complexes --- characterization --- bio-sorbent --- phosphate --- adsorption --- mechanism --- thermodynamic --- chitosan --- hydrogel --- phase transition --- gelation mechanism --- chitosan --- defense responses --- fruits --- nanoparticles --- plant growth --- pesticides --- Boron --- chitosan --- iron(III) hydroxide --- neodymium --- sorption --- chitin --- chitosan --- chitosan derivative --- chitin derivative --- oral care --- skin care --- hear care --- marine resources --- over-the counter-drug --- polymer carrier --- chitin --- chitosan --- nanostructured biomaterial --- polymer --- self-masking nanosphere lithography --- cicada --- chitosan --- self-assembled --- polyelectrolyte complex --- nanoparticle --- drug delivery --- Citrobacter --- biosynthesis --- bioflocculant --- chitosan --- metabolic pathway --- PEO/chitosan blend --- swelling --- mechanical properties --- wet and dried states --- chitosan --- biological activity --- medical applications --- chitosan --- PCL --- strontium --- scaffolds --- craniofacial engineering --- chitin --- chitosan --- derivatization --- controlled functionalization --- click chemistry --- graft copolymer --- cyclodextrin --- dendrimer --- ionic liquids --- chitin deacetylases --- chitosan --- chitooligosaccharides --- carbohydrate esterases --- structure --- substrate specificity --- deacetylation pattern --- binary --- chitosan --- desorption --- iron --- lead --- mercury --- salt effects --- single --- sorption competition --- chitosan supported copper --- heterogeneous catalyst --- organosilicon compound --- easily recyclable --- chitosan --- papermaking --- wet-end --- coating --- wastewater --- ionic cross-linking --- eco-friendly formulations --- thermal transition sol-gel --- drug delivery systems --- MTDSC --- DSC --- gene delivery --- non-viral vectors --- chitosan structure --- pDNA --- siRNA --- TEOS --- methylene blue --- chitosan --- modelling --- cross-linking --- interpenetrating --- XRD --- FTIR

Polymeric Materials: Surfaces, Interfaces and Bioapplications

Authors: --- --- --- --- et al.
ISBN: 9783038979623 / 9783038979630 Year: Pages: 342 DOI: 10.3390/books978-3-03897-963-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.

Keywords

corn stalk fiber --- friction composite --- friction and wear --- worn surface morphology --- antifouling coatings --- biofouling --- natural biofilms --- single-stranded conformation polymorphism --- polydimethylsiloxane --- multidimensional scale analysis --- antimicrobial coatings --- porous surfaces --- breath figures --- antimicrobial polymer --- coatings --- hydrogel --- protein-repellent polymer --- surface-attached polymer network --- polymer cross-linking --- alginate modification --- calcium chloride --- microparticles --- spray drying --- prolonged drug release --- gradient wrinkles --- UV/ozone --- irradiance --- polymeric composites --- bonding agents --- antibacterial --- oral biofilms --- periodontal pathogens --- caries inhibition --- recycling --- polypropylene --- biodegradable polymers --- degradation --- inmiscibility --- hemicelluloses --- chitosan --- composite films --- oxygen barrier property --- food packaging --- nanosecond laser surface modification --- ABS (Acrylonitrile-Butadiene-Styrene) --- surface wettability --- superhydrophobic --- superhydrophilic --- poly(x-chlorostyrene) --- honeycomb --- breath figures --- conformational entropy --- spinal anatomy --- intervertebral disc --- degenerative disc disease --- herniated disc --- spinal fusion --- total disc replacement --- tissue engineering --- Electrically conductive polymers --- Electroactive biomaterials --- Electrical stimulation --- Smart composites --- Bioelectric effect --- Drug delivery --- Artificial muscle --- bio-based --- fossil --- hybrids --- blends --- packaging --- bio-based polymers --- antimicrobial --- biodegradable --- sustainable --- eco-friendly --- graphene oxide --- chitosan --- composites --- scaffolds --- tissue engineering --- surface modification/functionalization --- surface segregation --- micro- and nanopatterned films --- blends and (nano)composites --- coatings --- surface wettability --- stimuli-responsive materials/smart surfaces --- bioapplications

Listing 1 - 9 of 9
Sort by
Narrow your search