Search results:
Found 2
Listing 1  2 of 2 
Sort by

Choose an application
This Special Issue covers a wide range of topics from fundamental studies to applications of ionized gases. It is dedicated to four topics of interest: 1. ATOMIC COLLISION PROCESSES (electron and photon interactions with atomic particles, heavy particle collisions, swarms, and transport phenomena); 2. PARTICLE AND LASER BEAM INTERACTION WITH SOLIDS (atomic collisions in solids, sputtering and deposition, and laser and plasma interactions with surfaces); 3. LOW TEMPERATURE PLASMAS (plasma spectroscopy and other diagnostic methods, gas discharges, and plasma applications and devices); 4. GENERAL PLASMAS (fusion plasmas, astrophysical plasmas, and collective phenomena). This Special Issue of Atoms will highlight the need for continued research on ionized gas physics in different topics ranging from fundamental studies to applications, and will review current investigations.
strongfield physics  attoscience  bicircular field  highorder harmonic generation  abovethreshold ionization  spinpolarized electrons  capacitivelycoupled discharge  oxygen  particleincell/Monte Carlo collision  electron heating  secondary electron emission  Large Helical Device (LHD)  deuterium experiment  ion temperature of 10 keV  plasma research  spectroscopic study  dispersion interferometer  modified theories of gravity  methods: analytical  methods: numerical  galaxies: elliptical  galaxies: fundamental parameters  nonequilibrium  collisions  radiation  planetary atmospheric entry  laser matter interaction  laserinduced breakdown  plasma  spectroscopy  streak camera  plasma  spectral lines  Stark broadening  oxygen  silicon  spectroscopy  gas discharges  plasma applications  databases  virtual observatory  cross sections  rate coefficients  runway electron  plasma current  fusion plasma  tokamak  glow discharge  argon  nitrogen admixture  discharge voltage  diffuse discharge  constricted discharge  electrical theory of DBDs  QVplot  instantaneous power  rainbow scattering  positron channeling effect  timedependent Schrödinger equation  chiral single wall carbon nanotubes  black hole physics  cosmology  quasar spectroscopy  cosmological parameters  ionized gas  broad line region  Rydberg atoms  dynamic instability  control of atomic states  Förster resonance  plasma spectroscopy  Stark broadening  plasma diagnostics  line shape modeling  ZeemanDoppler broadening  Balmer line series  radiative recombination  photoacoustic  photothermal  inverse problem  thermal memory  minimum volume cell  neural networks  thermal diffusivity  conductivity  linear coefficient of thermal extension  AGN  black holes  gravitational waves  binary black holes  quasars  photodetachment  magnetically confined fusion  neutral beam injection  plasma heating  optical cavity amplification  lowenergy electrons  electron–molecule interactions  astrochemistry  laboratory plasma  astrophysical plasma  fusion plasma  lasers  stars  extragalactic objects  spectra  spectroscopy  scaling laws
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropybased concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
complexity  streamflow  water level  composite multiscale sample entropy  trend  Poyang Lake basin  fourparameter exponential gamma distribution  principle of maximum entropy  precipitation frequency analysis  methods of moments  maximum likelihood estimation  flood frequency analysis  generalized gamma (GG) distribution  principle of maximum entropy (POME)  entropy theory  principle of maximum entropy (POME)  GB2 distribution  flood frequency analysis  nonpoint source pollution  ANN  entropy weighting method  datascarce  multievents  spatiotemporal variability  soil water content  entropy  arid region  joint entropy  NDVI  temperature  precipitation  groundwater depth  Hei River basin  turbulent flow  canopy flow  randomness  coherent structures  Shannon entropy  Kolmogorov complexity  entropy  information transfer  optimization  radar  rainfall network  water resource carrying capacity  forewarning model  entropy of information  fuzzy analytic hierarchy process  projection pursuit  accelerating genetic algorithm  entropy production  conditional entropy production  stochastic processes  scaling  climacogram  turbulence  water resources vulnerability  connection entropy  changing environment  set pair analysis  Anhui Province  crossentropy minimization  land suitability evaluation  spatial optimization  monthly streamflow forecasting  Burg entropy  configurational entropy  entropy spectral analysis time series analysis  entropy  water monitoring  network design  hydrometric network  information theory  entropy applications  hydrological risk analysis  maximum entropycopula method  uncertainty  Loess Plateau  entropy  water engineering  Tsallis entropy  principle of maximum entropy  Lagrangian function  probability distribution function  flux concentration relation  uncertainty  information  informational entropy  variation of information  continuous probability distribution functions  confidence intervals  precipitation  variability  marginal entropy  crop yield  Hexi corridor  flow duration curve  Shannon entropy  entropy parameter  modeling  spatial and dynamics characteristic  hydrology  tropical rainfall  statistical scaling  Tsallis entropy  multiplicative cascades  BetaLognormal model  rainfall forecast  cross entropy  ant colony fuzzy clustering  combined forecast  information entropy  mutual information  kernel density estimation  ENSO  nonlinear relation  scaling laws  power laws  water distribution networks  robustness  flow entropy  entropy theory  frequency analysis  hydrometeorological extremes  Bayesian technique  rainfall  entropy ensemble filter  ensemble model simulation criterion  EEF method  bootstrap aggregating  bagging  bootstrap neural networks  El Niño  ENSO  neural network forecast  sea surface temperature  tropical Pacific  entropy  cross elasticity  mean annual runoff  water resources  resilience  quaternary catchment  complement  substitute  entropy theory  complex systems  hydraulics  hydrology  water engineering  environmental engineering
Listing 1  2 of 2 
Sort by

2019 (2)