Search results: Found 4

Listing 1 - 4 of 4
Sort by
Experimental Investigations of Deformation Pathways in Nanowires

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783866449053 Year: Volume: 8 Pages: VIII, 202 p. DOI: 10.5445/KSP/1000029369 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

This work deals with the experimental investigation of the mechanical properties of nanowires. Experiments are conducted in a dedicated system inside the electron microscope. The mechanical response of various material systems is probed, the underlying deformation mechanisms are elucidated and subsequently put into context with mechanical size effects.

Creep and High Temperature Deformation of Metals and Alloys

Authors: ---
ISBN: 9783039218783 9783039218790 Year: Pages: 212 DOI: 10.3390/books978-3-03921-879-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated.This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.

Recent Development of Electrospinning for Drug Delivery

Authors: --- ---
ISBN: 9783039281404 9783039281411 Year: Pages: 206 DOI: 10.3390/books978-3-03928-141-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Several promising techniques have been developed to overcome the poor solubility and/or membrane permeability properties of new drug candidates, including different fiber formation methods. Electrospinning is one of the most commonly used spinning techniques for fiber formation, induced by the high voltage applied to the drug-loaded solution. With modifying the characteristics of the solution and the spinning parameters, the functionality-related properties of the formulated fibers can be finely tuned. The fiber properties (i.e., high specific surface area, porosity, and the possibility of controlling the crystalline–amorphous phase transitions of the loaded drugs) enable the improved rate and extent of solubility, causing a rapid onset of absorption. However, the enhanced molecular mobility of the amorphous drugs embedded into the fibers is also responsible for their physical–chemical instability. This Special Issue will address new developments in the area of electrospun nanofibers for drug delivery and wound healing applications, covering recent advantages and future directions in electrospun fiber formulations and scalability. Moreover, it serves to highlight and capture the contemporary progress in electrospinning techniques, with particular attention to the industrial feasibility of developing pharmaceutical dosage forms. All aspects of small molecule or biologics-loaded fibrous dosage forms, focusing on the processability, structures and functions, and stability issues, are included.

Keywords

electrospinning --- gentamicin sulfate --- polylactide-co-polycaprolactone --- drug release kinetics --- tissue engineering --- growth factor --- diabetic --- wound healing --- nanocomposite --- electrospinning --- coaxial spinning --- core-sheath nanofibers --- biomedical --- drug delivery --- electrospinning --- scale-up --- processability --- biopharmaceuticals --- oral dosage form --- grinding --- aceclofenac --- nanofiber --- electrospinning --- scanning electron microscopy --- fourier transform infrared spectroscopy --- differential scanning calorimetry --- nanotechnology --- biotechnology --- probiotics --- Lactobacillus --- Lactococcus --- electrospinning --- nanofibers --- drying --- local delivery --- viability --- antibacterial activity --- bacterial bioreporters --- drug release --- electrospinning --- microfibers --- nanofibers --- UV imaging --- wetting --- in situ drug release --- nanofibers --- electrospinning --- poorly water-soluble drug --- piroxicam --- hydroxypropyl methyl cellulose --- polydextrose --- scanning white light interferometry --- nanotechnology --- nanofibers --- traditional electrospinning --- ultrasound-enhanced electrospinning --- drug delivery system --- haemanthamine --- plant-origin alkaloid --- electrospinning --- amphiphilic nanofibers --- self-assembled liposomes --- physical solid-state properties --- drug release --- electrospinning --- PCL --- gelatin --- clove essential oil --- antibacterial --- biocompatibility --- artificial red blood cells --- electrospinning and electrospray --- pectin --- oligochitosan --- hydrogel --- microcapsules --- electrospinning --- wound dressings --- solvent casting --- 3D printing --- polymeric carrier --- n/a

PV System Design and Performance

Author:
ISBN: 9783039216222 9783039216239 Year: Pages: 360 DOI: 10.3390/books978-3-03921-623-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.

Keywords

floating PV generation structure --- fiber reinforced polymeric plastic (FRP) --- pultruded FRP --- sheet molding compound FRP --- structural design --- mooring system --- photovoltaic plants --- software development --- performance analysis --- loss analysis --- graphical malfunction detection --- fuzzy logic controller --- maximum power point tracking (MPPT) --- dc-dc converter --- photovoltaic system --- photovoltaic system --- modeling --- stability analysis --- grid-connected --- photovoltaics --- modules --- shade resilience --- buck converter --- module architecture --- PV array --- FCM algorithm --- cluster analysis --- fault diagnosis --- membership algorithm --- solar energy --- photovoltaic module performance --- organic soiling --- Scanning Electron Microscopy (SEM) --- floating PV systems (FPV) --- floating PV module (FPVM) --- ANOVA --- Bartlett’s test --- Hartigan’s dip test --- Jarque-Bera’s test --- Kruskal-Wallis’ test --- Mood’s Median test --- residential buildings --- Tukey’s test --- urban context --- solar cells --- AC parameters --- underdamped oscillation --- impedance spectroscopy --- partial shading --- photo-generated current --- photovoltaic performance --- maximum power point --- image processing --- photovoltaic (PV) systems monitoring --- malfunction detection --- data analysis --- PV systems --- cluster analysis --- failure detection --- ageing and degradation of PV-modules --- performance analysis --- UV-fluorescence imaging --- photovoltaic modeling --- parameter estimation --- optimization problem --- metaheuristic --- opposition-based learning --- quasi-opposition based learning --- improved cuckoo search algorithm --- PV energy performance --- PV thermal performance --- thermal interaction --- conventional roof membrane --- vegetated/green roof --- Renewable Energy --- PV systems --- forecast --- energy --- simulation --- silicon --- photovoltaics --- modules --- electroluminescence --- defects --- cracks --- performance ratio --- annual yield --- GIS --- PV system --- spatial analyses --- performance ratio --- GIS --- PV module --- system --- population density --- urban compactness --- solar farm --- photovoltaics --- reactive power support --- STATCOM --- technical costs --- photovoltaic systems --- reliability --- real data --- energy yield --- fault tree analysis --- failure mode and effect analysis --- availability --- failure rates

Listing 1 - 4 of 4
Sort by
Narrow your search