Search results: Found 2

Listing 1 - 2 of 2
Sort by
Satellite Altimetry for Earth Sciences

Authors: --- --- ---
ISBN: 9783038976806 9783038976813 Year: Pages: 484 DOI: 10.3390/books978-3-03897-681-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Geophysics and Geomagnetism
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Satellite altimetry is a radar technique for measuring the topography of the Earth’s surface. It was initially designed for measuring the ocean’s topography, with reference to an ellipsoid, and for the determination of the marine geoid. Satellite altimetry has provided extremely valuable information on ocean science (e.g., circulation surface geostrophic currents, eddy structures, wave heights, and the propagation of oceanic Kelvin and Rossby waves). With more than 25 years of observations, it is also becoming vital to climate research, providing accurate measurements of sea level variations from regional to global scales. Altimetry has also demonstrated a strong potential for geophysical, cryospheric, and hydrological research and is now commonly used for the monitoring of Arctic and Antarctic ice sheet topography and of terrestrial surface water levels. This book aims to present reviews and recent advances of general interest in the use of radar altimetry in Earth sciences. Manuscripts are related to any aspect of radar altimetry technique or geophysical applications. We also encourage manuscripts resulting from the application of new altimetric technology (SAR, SARin, and Ka band) and improvements expected from missions to be launched in the near future (i.e., SWOT).

Keywords

satellite altimetry --- Envisat --- SARAL --- unsupervised classification --- K-medoids --- Greenland Sea --- Fram Strait --- upper layer thickness --- satellite altimeter --- two-layer ocean model --- South China Sea --- coastal altimetry --- sea surface height --- Jason-2 --- waveform retracking --- satellite altimetry --- inland water --- CryosSat-2 SAR --- Mekong Basin --- water level time series --- classification --- stack data --- altimetry --- Ka-band --- data processing --- calibration --- validation --- altimetry --- SAR --- calibration --- validation --- sea surface height --- coastal altimetry --- validation --- tide gauge --- altimetry --- Ka-band --- oceanography --- hydrology --- ice --- geodesy --- Jason-2 --- Hong Kong coast --- retracking --- X-TRACK --- ALES --- PISTACH --- radar altimetry --- coastal altimetry --- sea surface height --- topography of the intertidal zone --- ERS-2 --- ENVISAT --- SARAL --- CryoSat-2 --- altimetry --- water level --- discharge --- Sentinel-3 --- satellite altimetry --- microwave radiometer --- wet tropospheric correction --- wet path delay --- sensor calibration --- HY-2A --- waveform retracking --- range precision --- marine gravity --- radar altimetry --- waveform --- dielectric permittivity --- soil moisture --- satellite altimetry --- SWOT --- western Mediterranean Sea --- fine scale --- SWOT simulator --- ROMS model --- filtering --- storm surge --- satellite altimetry --- calibration --- numerical modelling --- FVCOM --- ocean tides --- coastal altimetry --- ALES retracker --- ocean geostrophy --- water volume transport --- satellite geodesy --- space gravity --- altimetry --- Argo --- Southern Ocean --- ACC --- lake level --- lake volume --- evaporation --- streamflow --- Gravity Recovery and Climate Experiment (GRACE) --- altimetry --- Landsat --- Aral Sea --- altimetry --- water levels --- validation --- Inner Niger Delta --- altimetry --- orbit decay --- drifting orbit --- geodetic orbit --- leads --- satellite altimetry --- CryoSat-2 --- classification --- peakiness --- polar ocean

Assimilation of Remote Sensing Data into Earth System Models

Authors: --- ---
ISBN: 9783039216406 9783039216413 Year: Pages: 236 DOI: 10.3390/books978-3-03921-641-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In the Earth sciences, a transition is currently occurring in multiple fields towards an integrated Earth system approach, with applications including numerical weather prediction, hydrological forecasting, climate impact studies, ocean dynamics estimation and monitoring, and carbon cycle monitoring. These approaches rely on coupled modeling techniques using Earth system models that account for an increased level of complexity of the processes and interactions between atmosphere, ocean, sea ice, and terrestrial surfaces. A crucial component of Earth system approaches is the development of coupled data assimilation of satellite observations to ensure consistent initialization at the interface between the different subsystems. Going towards strongly coupled data assimilation involving all Earth system components is a subject of active research. A lot of progress is being made in the ocean–atmosphere domain, but also over land. As atmospheric models now tend to address subkilometric scales, assimilating high spatial resolution satellite data in the land surface models used in atmospheric models is critical. This evolution is also challenging for hydrological modeling. This book gathers papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)