Search results: Found 32

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
Sustainable Consumer Behavior

Author:
ISBN: 9783038425830 9783038425847 Year: Pages: VIII, 211 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences
Added to DOAB on : 2017-12-27 09:00:07
License:

Loading...
Export citation

Choose an application

Abstract

Sustainability may be achieved through many different agents and institutions in society, including governments, new technologies, industries, and markets. In addition to these agents, consumers and households play a crucial role in the adoption of sustainable products and technologies. Additionally, households are responsible for substantial proportions of energy use and waste. In the European Union, the end use of total energy by households was about 25% in 2014 (Eurostat, 2016). Additionally, households generated 8% of total waste in the EU in 2012 (Eurostat, 2015). Moreover, ethical aspects of consumption are becoming more and more important. In order to gain understanding of sustainable consumer and household behavior, Sustainability has devoted an entire Special Issue to this topic. The Special Issue includes studies focusing on macro- and meso-issues, such as political parties’ positions, nationality, social dilemmas and collective consumer efforts. Others studies focus on micro-issues of consumer behaviour, such as consumer segmentation, consumer perceptions, opinions, and intentions. The studies employ a variety of methods, including surveys, experiments, eye tracking, and contingent valuation. The collection of studies provide a balanced overview of consumer research in the field of sustainability.

The naïve language expert: How infants discover units and regularities in speech

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193295 Year: Pages: 156 DOI: 10.3389/978-2-88919-329-5 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

The advent of behavior-independent measures of cognition and major progress in experimental designs have led to substantial advances in the investigation of infant language learning mechanisms. Research in the last two decades has shown that infants are very efficient users of perceptual and statistical cues in order to extract linguistic units and regular patterns from the speech input. This has lent support for learning-based accounts of language acquisition that challenge traditional nativist views. Still, there are many open questions with respect to when and how specific patterns can be learned and the relevance of different types of input cues. For example, first steps have been made to identify the neural mechanisms supporting on-line extraction of words and statistical regularities from speech. Here, the temporal cortex seems to be a major player. How this region works in concert with other brain areas in order to detect and store new linguistic units is a question of broad interest. In this Research Topic of Frontiers in Language Sciences, we bring together experimental and review papers across linguistic domains, ranging from phonology to syntax that address on-line language learning in infancy. Specifically, we focused on papers that explore one of the following or related questions: How and when do infants start to segment linguistic units from the speech input and discover the regularities according to which they are related to each other? What is the role of different linguistic cues during these acquisition stages and how do different kinds of information interact? How are these processes reflected in children’s behavior, how are they represented in the brain and how do they unfold in time? What are the characteristics of the acquired representations as they are established, consolidated and stored in long-term memory?By bringing together behavioral and neurophysiological evidence on language learning mechanisms, we aim to contribute to a more complete picture of the expeditious and highly efficient early stages of language acquisition and their neural implementation.

Document Image Processing

Authors: ---
ISBN: 9783038971054 9783038971061 Year: Pages: 216 DOI: 10.3390/books978-3-03897-106-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2018-09-19 10:53:09
License:

Loading...
Export citation

Choose an application

Abstract

Document Image Processing allows systems like OCR, writer identification, writer recognition, check processing, historical document processing, etc., to extract useful information from document images. What we call a document image ranges from images of historical documents written on various surfaces, to synthetic images (useful for creating datasets) and videos including text. In order to succeed, many preprocessing tasks can be required: document skew detection and correction, slant removal, binarization and segmentation procedures, as well as other normalization tasks. These low-level tasks are generally followed by high-level tasks such as the recognition or spotting of textual elements (characters, words, or text lines). The intent of this Special Issue is to collect the experiences of leading scientists of the field, but also to be an assessment tool for people who are new to the world of document image processing.

Intelligent Imaging and Analysis

Authors: ---
ISBN: 9783039219209 9783039219216 Year: Pages: 492 DOI: 10.3390/books978-3-03921-921-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.

Keywords

image inspection --- non-referential method --- feature extraction --- fault pattern learning --- weighted kernel density estimation (WKDE) --- rail surface defect --- UAV image --- defect detection --- gray stretch maximum entropy --- image enhancement --- defect segmentation --- semi-automatic segmentation --- MR spine image --- vertebral body --- graph-based segmentation --- correlation --- surface defect of steel sheet --- image segmentation --- saliency detection --- low-rank and sparse decomposition --- intervertebral disc --- segmentation --- convolutional neural network --- fine grain segmentation --- U-net --- deep learning --- magnetic resonance image --- lumbar spine --- image adjustment --- colorfulness --- contrast --- sharpness --- high dynamic range --- local registration --- iterative closest points --- multimodal medical image registration --- machine vision --- point cloud registration --- greedy projection triangulation --- local correlation --- three-dimensional imaging --- optimization arrangement --- cavitation bubble --- water hydraulic valve --- defect inspection --- image processing --- feature extraction --- classification methods --- medical image registration --- image alignment in medical images --- misalignment correction in MRI --- midsagittal plane extraction --- symmetry detection --- PCA --- conformal mapping --- mesh parameterization --- mesh partitioning --- pixel extraction --- texture mapping --- image analysis --- image retrieval --- spatial information --- image classification --- computer vision --- image restoration --- motion deburring --- image denoising --- sparse feedback --- Image processing --- segmentation --- spline --- grey level co-occurrence matrix --- gradient detection --- threshold selection --- OpenCV --- machine learning --- transfer learning --- Inception-v3 --- geological structure images --- convolutional neural networks --- image segmentation --- active contour model --- level set --- signed pressure force function --- image segmentation --- deep learning --- synthetic aperture radar (SAR) --- oil slicks --- segnet --- pectus excavatum --- nuss procedure --- patient-specific nuss bar --- minimally invasive surgery --- computerized numerical control bending machine --- computer-aided design --- computer-aided manufacturing --- statistical body shape model --- self-intersection penalty term --- 3D pose estimation --- 3D semantic mapping --- incrementally probabilistic fusion --- CRF regularization --- road scenes --- deep learning --- medical image classification --- additional learning --- CT image --- automatic training --- GoogLeNet --- intelligent evaluation --- automated cover tests --- deviation of strabismus --- pupil localization --- shape from focus --- wear measurement --- sprocket teeth --- normal distribution operator image filtering --- adaptive evaluation window --- reverse engineering --- human parsing --- depth-estimation --- computational efficiency --- capacity optimization --- underwater visual localization method --- line segment features --- PL-SLAM --- face sketch synthesis --- face sketch recognition --- joint training model --- data imbalance --- Contrast Tomography (CT) --- pre-training strategy --- segmentation --- super-resolution --- dual-channel --- residual block --- convolutional kernel parameter --- long-term and short-term memory blocks --- n/a

Remote Sensing based Building Extraction

Authors: --- --- ---
ISBN: 9783039283828 9783039283835 Year: Pages: 442 DOI: 10.3390/books978-3-03928-383-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Construction
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D

Keywords

roof segmentation --- outline extraction --- convolutional neural network --- boundary regulated network --- very high resolution imagery --- building boundary extraction --- convolutional neural network --- active contour model --- high resolution optical images --- LiDAR --- richer convolution features --- building edges detection --- high spatial resolution remote sensing imagery --- building --- modelling --- reconstruction --- change detection --- LiDAR --- point cloud --- 3-D --- building extraction --- deep learning --- attention mechanism --- very high resolution --- imagery --- building detection --- aerial images --- feature-level-fusion --- straight-line segment matching --- occlusion --- building regularization technique --- point clouds --- boundary extraction --- regularization --- building reconstruction --- digital building height --- 3D urban expansion --- land-use --- DTM extraction --- open data --- developing city --- accuracy analysis --- building detection --- building index --- feature extraction --- mathematical morphology --- morphological attribute filter --- morphological profile --- building extraction --- deep learning --- semantic segmentation --- data fusion --- high-resolution satellite images --- GIS data --- high-resolution aerial images --- deep learning --- generative adversarial network --- semantic segmentation --- Inria aerial image labeling dataset --- Massachusetts buildings dataset --- building extraction --- simple linear iterative clustering (SLIC) --- multiscale Siamese convolutional networks (MSCNs) --- binary decision network --- unmanned aerial vehicle (UAV) --- image fusion --- high spatial resolution remotely sensed imagery --- object recognition --- deep learning --- method comparison --- LiDAR point cloud --- building extraction --- elevation map --- Gabor filter --- feature fusion --- semantic segmentation --- urban building extraction --- deep convolutional neural network --- VHR remote sensing imagery --- U-Net --- remote sensing --- deep learning --- building extraction --- web-net --- ultra-hierarchical sampling --- 3D reconstruction --- indoor modelling --- mobile laser scanning --- point clouds --- 5G signal simulation --- building extraction --- high-resolution aerial imagery --- fully convolutional network --- semantic segmentation --- n/a

Image Processing Using FPGAs

Author:
ISBN: 9783038979180 9783038979197 Year: Pages: 204 DOI: 10.3390/books978-3-03897-919-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs.

Very High Resolution (VHR) Satellite Imagery: Processing and Applications

Authors: ---
ISBN: 9783039217564 9783039217571 Year: Pages: 262 DOI: 10.3390/books978-3-03921-757-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing.

Keywords

road extraction --- very high-resolution image --- fast marching method --- semiautomatic --- edge constraint --- beaver mimicry --- beaver dam analogue --- QuickBird --- riparian --- stream restoration --- Worldview --- benthic mapping --- seagrass --- airborne hypespectral imagery --- Worldview-2 --- atmospheric correction --- sunglint correction --- water column correction --- dimensionality reduction techniques --- SVM classification --- linear unmixing --- building detection --- built-up areas extraction --- local feature points --- saliency index --- morphological building index --- Deformable CNN --- Faster R-CNN --- data augmentation --- occluded object detection --- very high-resolution Pléiades imagery --- canopy height model --- acquisition geometry --- forested mountain --- accuracy assessment --- remote sensing imagery --- super-resolution --- ultra-dense connection --- feature distillation --- video satellite --- compensation unit --- urban water mapping --- water index --- shadow detection --- threshold stability --- agriculture parcel segmentation --- superpixels --- consensus --- texture analysis --- multi-resolution segmentation (MRS) --- greenhouse extraction --- over-segmentation index (OSI) --- under-segmentation index (USI) --- error index of total area (ETA) --- composite error index (CEI) --- GaoFen-2 (GF-2) --- synthetic aperture radar --- landslide monitoring --- sub-pixel offset tracking --- Slumgullion landslide --- natural hazards --- large displacements --- remote sensing --- scene classification --- CNN --- capsule --- PrimaryCaps --- CapsNet --- High-resolution satellite imagery --- submesoscale --- spiral eddy --- cyanobacteria --- surface convergence --- western Baltic Sea

Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Authors: --- ---
ISBN: 9783039210404 9783039210411 Year: Pages: 194 DOI: 10.3390/books978-3-03921-041-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue contains a series of excellent research works on telecommunications and signal processing, selected from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) which was held on July 4–6, 2018, in Athens, Greece. The conference was organized in cooperation with the IEEE Region 8 (Europe, Middle East, and Africa), IEEE Greece Section, IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by seventeen universities from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic, Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and serves as a premier international forum for the annual exchange and promotion of the latest advances in telecommunication technology and signal processing. The aim of the conference is to bring together both novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas, and establish new cooperation between research groups from universities, research centers, and private sectors worldwide. This collection of 10 papers is highly recommended for researchers, and believed to be interesting, inspiring, and motivating for readers in their further research.

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (31)

Frontiers Media SA (1)


License

CC by-nc-nd (31)

CC by (1)


Language

english (28)

eng (4)


Year
From To Submit

2020 (9)

2019 (16)

2018 (5)

2017 (1)

2015 (1)