Search results: Found 4

Listing 1 - 4 of 4
Sort by
3D Printing of Metals

Author:
ISBN: 9783039213412 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Selective Laser Melting: Materials and Applications

Author:
ISBN: 9783039285785 / 9783039285792 Year: Pages: 98 DOI: 10.3390/books978-3-03928-579-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure–property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure–property correlations in the SLM processed materials and provides a value addition to the field of AM.

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039283521 / 9783039283538 Year: Pages: 372 DOI: 10.3390/books978-3-03928-353-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039284146 / 9783039284153 Year: Pages: 352 DOI: 10.3390/books978-3-03928-415-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (3)

english (1)


Year
From To Submit

2020 (3)

2019 (1)