Search results: Found 7

Listing 1 - 7 of 7
Sort by
Modeling and Analysis of Signal Transduction Networks

ISBN: 9783038421412 9783038421429 Year: Pages: 232 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-12 12:19:39
License:

Loading...
Export citation

Choose an application

Abstract

Biological pathways, such as signaling networks, are a key component of biological systems of each living cell. In fact, malfunctions of signaling pathways are linked to a number of diseases, and components of signaling pathways are used as potential drug targets. Elucidating the dynamic behavior of the components of pathways, and their interactions, is one of the key research areas of systems biology. Biological signaling networks are characterized by a large number of components and an even larger number of parameters describing the network. Furthermore, investigations of signaling networks are characterized by large uncertainties of the network as well as limited availability of data due to expensive and time-consuming experiments. As such, techniques derived from systems analysis, e.g., sensitivity analysis, experimental design, and parameter estimation, are important tools for elucidating the mechanisms involved in signaling networks. This Special Issue contains papers that investigate a variety of different signaling networks via established, as well as newly developed modeling and analysis techniques.

Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos

Author:
Book Series: Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ISSN: 18636489 ISBN: 9783731506423 Year: Volume: 31 Pages: XIX, 210 p. DOI: 10.5445/KSP/1000066940 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Computer Science
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.

Application of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in East Asia

Authors: ---
ISBN: 9783039212354 / 9783039212361 Year: Pages: 384 DOI: 10.3390/books978-3-03921-236-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

To promote scientific understanding of surface processes in East Asia, we have published details of the CMADS dataset in the journal, Water, and expect that users around the world will learn about CMADS datasets while promoting the development of hydrometeorological disciplines in East Asia. We hope and firmly believe that scientific development in East Asia and our understanding of this typical region will be further advanced.

Keywords

East Asia --- CMADS --- meteorological input uncertainty --- hydrological modelling --- SWAT --- non-point source pollution models --- CMADS --- Qinghai-Tibet Plateau (TP) --- SWAT --- CFSR --- TRMM --- PERSIANN --- PERSIANN-CDR --- CMADS --- satellite-derived rainfall --- streamflow simulation --- SWAT --- Han River --- GLUE --- hydrological model --- ParaSol --- SUFI2 --- uncertainty analysis --- SWAT model --- CMADS --- Lijiang River --- runoff --- uncertainty analysis --- hydrological elements --- statistical analysis --- SWAT --- CMADS --- climate variability --- land use change --- streamflow --- potential evapotranspiration --- Penman-Monteith --- CMADS --- China --- CMADS dataset --- parameter sensitivity --- SUFI-2 --- Yellow River --- reanalysis products --- satellite-based products --- hydrological model --- bayesian model averaging --- Xiang River basin --- total nitrogen --- accumulation --- SWAT model --- CMADS --- Biliuhe reservoir --- CMADS --- SWAT --- East Asia --- meteorological --- hydrological --- precipitation --- TMPA-3B42V7 --- CMADS --- hydrologic model --- uncertainty --- reservoirs --- operation rule --- Noah LSM-HMS --- capacity distribution --- aggregated reservoir --- CMADS --- CMADS --- IMERG --- statistical analysis --- SWAT hydrological simulation --- Jinsha River Basin --- blue and green water flows --- climate variability --- sensitivity analysis --- Erhai Lake Basin --- CMADS --- SWAT --- JBR --- soil moisture --- hydrological processes --- spatio-temporal --- sloping black soil farmland --- soil moisture content --- freeze–thaw period --- soil temperature --- CMADS-ST --- reservoir parameters --- runoff --- CMADS --- SWAT --- Yalong River --- CMADS --- impact --- hydrological modeling --- SWAT --- runoff --- sediment yield --- land-use change --- SWAT --- CMADS

Adaptive Catchment Management and Reservoir Operation

Authors: --- ---
ISBN: 9783038977384 / 9783038977391 Year: Pages: 498 DOI: 10.3390/books978-3-03897-739-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.

Keywords

Siemianówka --- hydrology --- Narew River --- dam --- reservoir --- discharge --- flow regime --- reservoir flushing --- numerical simulation --- flushing efficiency --- Kurobe River --- two-dimensional bed evolution model --- sediment flushing of empty storage --- shaft spillway pipe --- sediment flushing efficiency --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- Jingjiang River Reach --- Yangtze River --- CO2 --- reservoirs --- general regression neural network --- back propagation neural network --- climate change --- CMIP3 --- CMIP5 --- downscaling --- runoff response --- SWAT model --- stochastic linear programming --- Markov chain --- reliability --- vulnerability --- reservoir operation --- stochastic dynamic programming --- protection zone --- nutrient uptake --- NPP --- South-to-North Water Transfer Project --- Miyun Reservoir --- reservoir operation --- optimization --- SWAT --- HEC-ResPRM --- climate change --- CORDEX-Africa --- Tekeze basin --- long distance water diversion --- inverted siphon --- sensitivity analysis --- integrated supply system modeling --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- the Jingjiang River Reach --- the Yangtze River --- reservoir operation --- multi-stage stochastic optimization --- TB-MPC --- flood control --- real-time control --- energy --- hydropower stations --- differential evolution algorithm --- optimal scheduling --- ?-constrained method --- drinking water resources --- water environmental capacity (WEC) --- Environmental Fluid Dynamics Code (EFDC) model --- the Huangshi Reservoir --- seasonal rainfall --- upper Chao Phraya River Basin --- El Niño/Southern Oscillation --- Indian Monsoon --- sea surface temperatures --- reverse regulation --- coupling model --- aftereffect --- accompanying progressive optimality algorithm --- Dokan Dam --- runoff --- sediment load --- SWAT --- natural flow regime --- multi-objective model --- uncertainty --- genetic algorithm --- land and water resources --- system dynamics --- modeling --- scenario analysis --- Heilongjiang --- tropical reservoir --- heating impact --- Langcang-Mekong River --- Kappa distribution --- parameter relation --- partial gauged basin --- power function --- ratio curve --- ungauged basin --- reservoir operation --- integrated surface water-groundwater model --- Heihe River Basin --- environmental flow --- irrigation --- design and operation of the multipurpose reservoir --- water deficit --- reservoir simulation model --- climate change --- multi-objective optimization NSGA II --- resilience and robustness --- costs and benefits --- water energy --- multi-agent of river basin --- game theory --- water resources allocation --- optimal flood control operation --- cascade reservoirs --- dynamic programming with progressive optimality algorithm (DP-POA) --- the upper Yangtze River Basin --- parameterization --- simulation --- optimization --- direct policy search --- hedging policy --- shortage ratio: Vulnerability --- NSGA-II --- lentic habitats --- bitterling --- mussel --- floodplain vertical shape index --- sediment management --- adaptive management --- catchment modelling --- integrated management --- reservoir operation

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210121 / 9783039210138 Year: Pages: 280 DOI: 10.3390/books978-3-03921-013-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210145 / 9783039210152 Year: Pages: 256 DOI: 10.3390/books978-3-03921-015-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210169 / 9783039210176 Year: Pages: 270 DOI: 10.3390/books978-3-03921-017-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Listing 1 - 7 of 7
Sort by
Narrow your search