Search results: Found 3

Listing 1 - 3 of 3
Sort by
Flow and Transport Properties of Unconventional Reservoirs 2018

Authors: --- --- ---
ISBN: 9783039211166 / 9783039211173 Year: Pages: 364 DOI: 10.3390/books978-3-03921-117-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Unconventional reservoirs are usually complex and highly heterogeneous, such as shale, coal, and tight sandstone reservoirs. The strong physical and chemical interactions between fluids and pore surfaces lead to the inapplicability of conventional approaches for characterizing fluid flow in these low-porosity and ultralow-permeability reservoir systems. Therefore, new theories and techniques are urgently needed to characterize petrophysical properties, fluid transport, and their relationships at multiple scales for improving production efficiency from unconventional reservoirs. This book presents fundamental innovations gathered from 21 recent works on novel applications of new techniques and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy. Clearly, the research covered in this book is helpful to understand and master the latest techniques and theories for unconventional reservoirs, which have important practical significance for the economic and effective development of unconventional oil and gas resources.

Keywords

fracturing fluid --- rheology --- chelating agent --- viscosity --- polymer --- fluid-solid interaction --- velocity profile --- the average flow velocity --- flow resistance --- pore network model --- shale gas --- volume fracturing --- finite volume method --- production simulation --- multi-scale flow --- multi-scale fracture --- shale gas reservoir --- fractured well transient productivity --- succession pseudo-steady state (SPSS) method --- complex fracture network --- multi-scale flow --- analysis of influencing factors --- tight sandstones --- spontaneous imbibition --- remaining oil distributions --- imbibition front --- imbibition recovery --- NMR --- slip length --- large density ratio --- contact angle --- pseudo-potential model --- lattice Boltzmann method --- micro-fracture --- dissolved gas --- experimental evaluation --- reservoir depletion --- recovery factor --- tight oil --- Lucaogou Formation --- tight oil --- pore structure --- prediction by NMR logs --- tight oil reservoir --- SRV-fractured horizontal well --- multiporosity and multiscale --- flow regimes --- productivity contribution degree of multimedium --- equilibrium permeability --- non-equilibrium permeability --- matrix–fracture interaction --- effective stress --- coal deformation --- porous media --- non-linear flow --- conformable derivative --- fractal --- hydraulic fracturing --- tight reservoirs --- fracture diversion --- extended finite element method --- fracture network --- gas adsorption capacity --- shale reservoirs --- influential factors --- integrated methods --- sulfonate gemini surfactant --- thickener --- temperature-resistance --- clean fracturing fluid --- low-salinity water flooding --- clay mineral composition --- enhanced oil recovery --- wetting angle --- pH of formation water --- fractional diffusion --- fractal geometry --- analytical model --- shale gas reservoir --- carbonate reservoir --- petrophysical characterization --- pore types --- pore structure --- permeability --- fractal dimension --- reservoir classifications --- deep circulation groundwater --- groundwater flow --- geothermal water --- faults --- isotopes --- shale permeability --- local effect --- global effect --- matrix-fracture interactions --- nanopore --- pore structure --- shale --- tight sandstone --- mudstone --- nitrogen adsorption --- fractal --- enhanced geothermal system --- well-placement optimization --- fracture continuum method --- 0-1 programming --- unconventional reservoirs --- petrophysical characterization --- fluid transport physics

Micro/Nano Materials for Clean Energy and Environment

Authors: ---
ISBN: 9783039211289 / 9783039211296 Year: Pages: 123 DOI: 10.3390/books978-3-03921-129-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:41:30
License:

Loading...
Export citation

Choose an application

Abstract

The Tsinghua University–University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology (JCMEET) is a platform. It was established on Nov.11, 2017. The Chairperson of University Council of Tsinghua University, Dr. Xu Chen, and the President of the University of Waterloo, Dr. Feridun Hamdullahpur, attended the opening ceremony and unveiled the nameplate for the joint research center on 29th of March, 2018. The research center serves as a platform for researchers at both universities to conduct joint research in the targeted areas, and to meet regularly for information exchange, talent exchange, and knowledge mobilization, especially in the fields of micro/nano, energy, and environmental technologies. The center focuses on three main interests: micro/nano energy technology, micro/nano pollution control technology, and relevant fundamental research. In order to celebrate the first anniversary of the Joint Research Center, we were invited to serve as the Guest Editors of this Special Issue of Materials focusing on the topic of micro/nano-materials for clean energy and environment. It collects research papers from a broad range of topics related to micro/nanostructured materials aimed at future energy resources, low emission energy conversion, energy storage, energy efficiency improvement, air emission control, air monitoring, air cleaning, and many other related applications. This Special Issue provides an opportunity and example for the international community to discuss how to actively address the energy and environment issues that we are facing.

Sustainability of Fossil Fuels

Author:
ISBN: 9783039212194 / 9783039212200 Year: Pages: 284 DOI: 10.3390/books978-3-03921-220-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The energy and fuel industries represent an extensive field for the development and implementation of solutions aimed at improving the technological, environmental, and economic performance of technological cycles. In recent years, the issues of ecology and energy security have become especially important. Energy is firmly connected with all spheres of human economic life but, unfortunately, it also has an extremely negative (often fatal) effect on the environment and public health. Depletion of energy resources, the complexity of their extraction, and transportation are also problems of a global scale. Therefore, it is especially important nowadays to try to take care of nature and think about the resources that are necessary for future generations. For scientific teams in different countries, the development of sustainable and safe technologies for the use of fuels in the energy sector will be a challenge in the coming decades

Keywords

coal --- slurry fuel --- combustion --- forest fuels --- biomass --- anthropogenic emission concentration --- municipal solid waste --- coal processing waste --- oil refining waste --- waste management --- composite fuel --- energy production --- fuel activation --- waste-derived fuel --- coal-water slurry --- laser pulse --- syngas --- aerosol --- two-component droplet --- heating --- evaporation --- explosive breakup --- disintegration --- droplet holder material --- hydraulic fracturing --- water retention in shale --- anionic surfactant --- shale gas --- supercritical CO2 --- tectonic coal --- pore structure --- methane desorption --- embedded discrete fracture model --- fractured reservoir simulation --- matrix-fracture transmissibility --- combustion --- methane hydrate --- hydrate dissociation --- PTV method --- transport of tracers --- linear drift effect --- convection–diffusion equation --- enhanced oil recovery --- closed-form analytical solution --- methane --- combustion mechanism --- mechanism reduction --- skeletal mechanism --- Bunsen burner --- covert fault zone --- genetic mechanism --- Qikou Sag --- structure evolution --- oil-controlling mode --- Riedel shear --- Mohr–Coulomb theory --- slurry fuel --- ignition --- combustion --- combustion chamber --- soaring of fuel droplets --- trajectories of fuel droplets --- decorated polyacrylamide --- physical properties --- displacement mechanism --- flow behavior --- enhanced recovery --- injection mode --- coal consumption forecasting --- support vector machine --- improved gravitational search algorithm --- grey relational analysis --- dual string completion --- gas lift --- gas lift rate --- split factor --- gas robbing --- gas lift optimization

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

eng (3)


Year
From To Submit

2019 (3)