Search results: Found 10

Listing 1 - 10 of 10
Sort by
Silver Nano/microparticles: Modification and Applications

Authors: ---
ISBN: 9783039211777 / 9783039211784 Year: Pages: 206 DOI: 10.3390/books978-3-03921-178-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Nano/micro-size particles are widely applied in various fields. Among the various particles, silver particles are considered among the most prominent nanomaterials in the biomedical and industrial sectors because of their favorable physical, chemical, and biological characteristics. Thus, numerous studies have been conducted to evaluate their properties and utilize them in various applications, such as diagnostics, anti-bacterial and anti-cancer therapeutics, and optoelectronics. The properties of silver particles are strongly influenced by their size, morphological shape, and surface characteristics, which can be modified by diverse synthetic methods, reducing agents, and stabilizers. This Special Issue provides a range of original contributions detailing the synthesis, modification, properties, and applications of silver materials. Nine outstanding papers describing examples of the most recent advances in silver nano/microparticles are included. Silver nano/micro-size particles have many potential advantages as next-generation materials in various areas, including nanomedicine. This Special Issue might be helpful to understand the value of silver particles in the biomedical and industrial fields

Application of Nanotechnology in Food Science and Food Microbiology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454884 Year: Pages: 213 DOI: 10.3389/978-2-88945-488-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Botany
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Nanotechnology is a fast-evolving discipline that already produces outstanding basic knowledge and industrial applications for the benefit of society. It is a new emerging and fascinating field of science, that permits advanced research in many areas. The first applications of nanotechnology mainly concerned material sciences; applications in the agriculture and food sectors are still emerging. Food science nanotechnology is an area of rising attention that unties new possibilities for the food industry. Due to the rapid population growth there is a need to produce food and beverages in a more efficient, safe and sustainable way. The application of nanotechnology in food has also gained great importance in recent years in view of its potential application to improve production of food crops, enhance nutrition, packaging and food safety overall. The new materials, products and applications are anticipated to bring lots of improvements to the food and related sectors, impacting agriculture and food production, food processing, distribution, storage, sanitation as well as the development of innovative products and sensors for effective detection of contaminants. Therefore, nanotechnology present with a large potential to provide an opportunity for the researchers of food science, food microbiology and other fields, to develop new tools for incorporation of nanoparticles into food system that could augment existing functions and add new ones.However, the number of relative publications currently available is rather small. The present Research Topic aims to provide with basic information and practical applications regarding all aspects related to the applications of nanotechnology in food science and food microbiology, namely, nanoparticle synthesis, especially through the eco-friendly perspective, potential applications in food processing, biosensor development, alternative strategies for effective pathogenic bacteria monitoring as well as the possible effects on human health and the environment.

Untersuchungen zur Herstellung geträgerter mono- und bimetallischer Nanopartikel mithilfe von überkritischem CO2

Author:
ISBN: 9783731504665 Year: Pages: X, 201 p. DOI: 10.5445/KSP/1000051502 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Chemical Engineering
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Mono- and bimetallic nanoparticles were deposited onto different powdered supports by Supercritical Fluid Reactive Deposition (SFRD). Carbon dioxide was used as supercritical solvent and hydrogen as reduction agent. In order to optimize the production process unknown factors influencing the particle and product properties were extensively studied.

Geomicrobiology and Biogeochemistry of Precious Metals

Authors: ---
ISBN: 9783038973461 9783038973478 Year: Pages: 182 DOI: 10.3390/books978-3-03897-347-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Ecology --- Geology --- Earth Sciences --- Environmental Sciences
Added to DOAB on : 2018-11-20 10:57:53
License:

Loading...
Export citation

Choose an application

Abstract

Precious metals continue to have economic and sociocultural importance, as their usage evolves and diversifies over time. Today, the industrial application of precious metals is increasing with the development of scientific and technological innovations. Especially, the biological cycling of these metals is receiving more and more attention, as the microbiota may be key to a range of issues regarding exploration, ore-processing and metallurgy, and the processing of electron waste. In this volume, we focus on enhancing the fundamental understanding of the biological processes that drive noble metal cycling and examine how this knowledge may be turned into biotechnolical applications.

Advanced Glasses, Composites and Ceramics for High Growth Industries

Authors: --- ---
ISBN: 9783038979609 / 9783038979616 Year: Pages: 186 DOI: 10.3390/books978-3-03897-961-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Advanced Glasses, Composites and Ceramics for High-Growth Industries (CoACH) was a European Training Network (ETN) project (http://www.coach-etn.eu/) funded by the Horizon 2020 program. CoACH involved multiple actors in the innovation ecosystem for advanced materials, composed of five universities and ten enterprises in seven different European countries. The project studied the next generation of materials that could bring innovation in the healthcare, construction, and energy sectors, among others, from new bioactive glasses for bone implants to eco-friendly cements and new environmentally friendly thermoelectrics for energy conversion. The novel materials developed in the CoACH project pave the way for innovative products, improved cost competitiveness, and positive environmental impact. The present Special Issue contains 14 papers resulting from the CoACH project, showcasing the breadth of materials and processes developed during the project.

Novel Photoactive Materials

Author:
ISBN: 9783038976509 Year: Pages: 166 DOI: 10.3390/books978-3-03897-651-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-03-05 14:29:32
License:

Loading...
Export citation

Choose an application

Abstract

Photoactivity represents the ability of a material, generally speaking a semiconductor, to become active when interacting with light. It can be declined in many ways, and several functionalities arising from this behavior of materials can be exploited, all leading to positive repercussions on our environment. There are several classes of effects of photoactivity, all of which have been deeply investigated in the last few decades, allowing to develop more and more efficient materials and devices. All of them share a common point, that is, the interaction of a material with light, although many different materials are taken into account depending on the effect desired—from elemental semiconductors like silicon, to more complex compounds like CdTe or GaAs, to metal oxides like TiO2 and ZnO. Given the broadness of the field, a huge number of works fall within this topic, and new areas of discovery are constantly explored. The special issue “Novel Photoactive Materials” has been proposed as a means to present recent developments in the field, and for this reason the articles included touch different aspects of photoactivity, from photocatalysis to photovoltaics to light emitting materials.

Mineral Surface Reactions at the Nanoscale

Author:
ISBN: 9783038978961 / 9783038978978 Year: Pages: 220 DOI: 10.3390/books978-3-03897-897-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geology --- Earth Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.

Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 / 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Surface Modification to Improve Properties of Materials

Author:
ISBN: 9783038977964 9783038977971 Year: Pages: 356 DOI: 10.3390/books978-3-03897-797-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.

Keywords

sulphur hexafluoride (SF6) plasma --- tetrafluoromethane (CF4) plasma --- polymer polyethylene terephthalate (PET) --- surface modification --- functionalization and wettability --- optical emission spectroscopy (OES) --- electronegativity --- PVD nanocomposite coatings --- aluminum die casting --- tool life --- tribological performance --- plasma surface modification --- polymer polypropylene --- neutral oxygen atom density --- initial surface functionalization --- food packaging --- wettability --- tantalum --- hardness --- gradient nanostructured layer --- grain size --- residual stress --- dry wear behavior --- surface texture --- surface treatment --- Ti6Al4V alloy --- tribology --- biology --- materials characterization --- shot-peening --- image processing --- TIG welding --- aluminum 6061-T6 --- special surfaces --- wettability --- superhydrophobic --- cell cultures --- anti-bio adhesion --- self-cleaning fabrics --- polyethylene granules --- low-pressure MW air plasma --- optical emission spectroscopy --- XPS --- laser cobalt catalytic probe --- Alloy 718 --- surface hardness --- surface residual stress --- grain size --- fretting failure --- corrosion --- antimicrobial film --- nisin --- physical properties --- plasma treatment polyvinyl alcohol --- surface characterization --- microhole-textured tool --- CaF2 --- micro-EDM --- tribological properties --- egg shell --- stearic acid --- modification --- particle characterization --- epoxy composites --- dynamic mechanical analysis --- adhesion effectiveness --- Poly(tetrafluoroethylene) --- Teflon --- plasma treatment --- zeta potential --- surface energy --- contact angle measurement --- lectin --- bovine serum albumin --- adsorption --- cellulose thin film --- polystyrene --- gold --- surface plasmon resonance spectroscopy --- silver nanoparticles --- laser ablation in liquids --- laser synthesis of colloidal nanoparticles solution --- nanoparticle-impregnated paper --- antimicrobial activity --- fiber fines --- sheet forming --- vacuum filtration --- pulse power --- electrical stimulation --- electric field --- mushroom --- L. edodes --- Lyophyllum deeastes Sing --- surface modification --- porous silicon --- silicon surface --- carbonization --- oxidation --- aluminum --- alloy --- duralumin --- etching --- surface texture --- porous-like --- adhesive bonding --- superhydrophobic --- porous silicon --- visible light assisted organosilanization --- solid state NMR --- XPS --- ToF-SIMS --- atmospheric pressure plasma jets --- plasma polymerization --- superhydrophobicity --- wetting --- biomaterial --- polymer --- plasma --- functionalization --- surface properties --- thrombosis --- hemocompatibility --- endothealization --- vascular graft --- biocompatibility --- endothelial cells --- surface properties --- nanostructuring --- functionalization --- grafting

Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 / 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Listing 1 - 10 of 10
Sort by