Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Plant immunity against viruses

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452699 Year: Pages: 163 DOI: 10.3389/978-2-88945-269-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Plant viruses impose a serious threat on agriculture, which motivates extensive breeding efforts for viral resistant crops and inspires lasting interests on basic research to understand the mechanisms underlying plant immunity against viruses. Viruses are obligate intracellular parasites. Their genomes are usually small and only encode a few products that are essential to hijack host machinery for their nucleotide and protein biosynthesis, and that are necessary to suppress host immunity. Plants evolved multilayers of defense mechanisms to defeat viral infection. In this research topic, we gathered 13 papers covering recent advances in different aspects of plant immunity against viruses, including reviews on RNA silencing and R gene based immunity and their application, translational initiation factor mediated recessive resistance, genome editing based viral immunity, role of chloroplast in plant-virus interaction, and research articles providing new mechanistic insights on plant-virus interactions. We hope that this Research Topic helps readers to have a better understanding of the progresses that have been made recently in plant immunity against viruses. A deeper understanding of plant antiviral immunity will facilitate the development of innovative approaches for crop protections and improvements.

Renewable Polymers: Processing and Chemical Modifications

Authors: ---
ISBN: 9783039287666 / 9783039287673 Year: Pages: 206 DOI: 10.3390/books978-3-03928-767-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The utilization of bio-resourced macromolecules for polymer applications has been the subject of increasing interest, mainly for sustainability and functionality reasons. This Special Issue of Processes brings together nine papers from leading scientists and researchers active in the area of “Sustainable and Renewable Polymers, Processing, and Chemical Modifications”. The collected papers include seven original research and two review articles related to renewable feedstock for polymer applications, processes for the fabrication of renewable polymer-based nanomaterials, the design and modification of renewable polymers, and applications of renewable polymers. The journal Processes will continue to nurture progress in this field through its position as an open access platform.

Bioactive Components in Fermented Foods and Food By-Products

Authors: --- ---
ISBN: 9783039288519 / 9783039288526 Year: Pages: 140 DOI: 10.3390/books978-3-03928-852-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Food fermentation is one of the most ancient processes of food production that has historically been used to extend food shelf life and to enhance its organoleptic properties. However, several studies have demonstrated that fermentation is also able to increase the nutritional value and/or digestibility of food. Firstly, microorganisms are able to produce huge amounts of secondary metabolites with excellent health benefits and preservative properties (i.e., antimicrobial activity). Secondarily, fermented foods contain living organisms that contribute to the modulation of the host physiological balance, which constitutes an opportunity to enrich the diet with new bioactive molecules. Indeed, some microorganisms can increase the levels of numerous bioactive compounds (e.g., vitamins, antioxidant compounds, peptides, etc.). Moreover, recent advances in fermentation have focused on food by-products; in fact, they are a source of potentially bioactive compounds that, after fermentation, could be used as ingredients for nutraceuticals and functional food formulations. Because of that, understanding the benefits of food fermentation is a growing field of research in nutrition and food science. This book aims to present the current knowledge and research trends concerning the use of fermentation technologies as sustainable and GRAS processes for food and nutraceutical production.

Progress in Water Footprint Assessment

Authors: --- ---
ISBN: 9783039210381 9783039210398 Year: Pages: 202 DOI: 10.3390/books978-3-03921-039-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Water Footprint Assessment is a young research field that considers how freshwater use, scarcity, and pollution relate to consumption, production, and trade patterns. This book presents a wide range of studies within this new field. It is argued that collective and coordinated action - at different scale levels and along all stages of commodity supply chains - is necessary to bring about more sustainable, efficient, and equitable water use. The presented studies range from farm to catchment and country level, and show how different actors along the supply chain of final commodities can contribute to more sustainable water use in the chain.

Biogenic Amines on Food Safety

Authors: ---
ISBN: 9783039210541 9783039210558 Year: Pages: 202 DOI: 10.3390/books978-3-03921-055-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Biogenic amines have been known for some time. These compounds are found in varying concentrations in a wide range of foods (fish, cheese, meat, wine, beer, vegetables, etc.) and their formations are influenced by different factors associated to those foods (composition, additives, ingredients, storage, microorganism, packaging, handing, conservation, etc.). The intake of foods containing high concentrations of biogenic amines can present a health hazard. Additionally, they have been used to establish indexes in various foods in order to signal the degree of freshness and/or deterioration of food. Nowadays, there has been an increase in the number of food poisoning episodes in consumers associated with the presence of these biogenic amines, mainly associated with histamines. Food safety is one of the main concerns of the consumer and safety agencies of different countries (EFSA, FDA, FSCJ, etc.), which have, as one of their main objectives, to control these biogenic amines, principally histamine, to assure a high level of food safety.Therefore, it is necessary to deepen our understanding of the formation, monitoring and reduction of biogenic amines during the development, processing and storage of food, even the effect of biogenic amines in consumers after digestion of foods with different levels of these compounds.With this aim, we are preparing a Special Issue on the topic of ""Biogenic Amines in Food Safety"", and we invite researchers to contribute original and unpublished research articles and reviews articles that involve studies of biogenic amines in food, which can provide an update to our knowledge of these compounds and their impacts on food quality and food safety.

Fertilizer Application on Crop Yield

Author:
ISBN: 9783038976547 Year: Pages: 252 DOI: 10.3390/books978-3-03897-655-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Fertilizer Application on Crop Yield that was published in Agronomy

Keywords

soil organic matter --- soil biota --- soil acidity --- soil erosion --- fertilizer management --- site-specific nutrient management --- balanced use of fertilizers --- integrated nutrient management --- agronomic response --- calcium --- Copper --- NPK amendments --- Value Cost Ratio --- Zinc --- nitrogen use efficiency (NUE) --- nitrate assimilation --- nitrate reductase activity --- maize --- nitrate --- ammonia --- NADH --- NADH-dehydrogenase --- Complex I --- site-specific K management --- soil K supply --- maize yield response to K --- maize crop manager --- nutrient expert for maize --- durum wheat --- mineral N --- organic N --- S fertilization --- grain quality --- grain yield --- phosphorous --- potassium --- corn–soybean rotation --- management --- production system --- organic farming --- conventional farming --- organic nutrients --- chemical fertilizers --- global food demand --- agroforestry system --- evergreen agriculture --- biofertilizer --- Bacillus pumilus --- growth promotion --- N fertilizer --- rice --- yield --- green manure --- nitrogen uptake --- Orychophragmus violaceus L. --- soil nitrogen pools --- grain yield --- Zea mays L. --- hybrid rice --- K use efficiency --- potassium --- saline tract --- soil N supply --- soil N mineralization --- N fertilization --- potentially mineralizable N --- humid Mediterranean climate --- conservation agriculture --- NUE --- nitrogen recovery efficiency --- nitrogen physiological recovery --- wheat yields --- Agrotain® urea --- rice-wheat system --- organic farming --- forage legume --- long-term productivity --- soil health --- economics --- integrated nutrient management --- rice --- wheat --- yield --- net returns --- soil health --- sustainability

Sustainable Cropping Systems

Author:
ISBN: 9783039289073 / 9783039289080 Year: Pages: 326 DOI: 10.3390/books978-3-03928-908-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Global crop production must substantially increase to meet the needs of a rapidly growing population. This is constrained by the availability of nutrients, water, and land. There is also an urgent need to reduce the negative environmental impacts of crop production. Collectively, these issues represent one of the greatest challenges of the twenty-first century. Sustainable cropping systems based on ecological principles are the core of integrated approaches to solve this critical challenge. This special issue provides an international basis for revealing the underlying mechanisms of sustainable cropping systems to drive agronomic innovations. It includes review and original research articles that report novel scientific findings on improvement in cropping systems related to crop yields and their resistance to biotic and abiotic stressors, resource use efficiency, environmental impact, sustainability, and ecosystem services.

Keywords

organic cropping system --- maize --- soybean --- wheat --- partial returns --- Zea mais L. --- Triticum aestivum L. --- Helianthus annuus L. --- organic fertilization --- mineral N fertilization --- protein crops --- systematic review --- Europe --- multiple correspondence analysis (MCA) --- potato (Solanum tuberosum) --- shade --- light --- yield --- growth --- quality --- cover crops --- agrobiodiversity --- conventionalization --- system approach --- harvesting strategies --- forage yield and quality --- forage sorghum --- pearl millet --- Texas High Plains --- kura clover --- living mulch --- cover crop --- perennial --- conservation --- nitrogen --- forage --- economics --- farmer’s perception --- maize --- push-pull technology --- stemborer --- no-tillage --- conservation agriculture --- durum wheat --- gluten fractions --- SDS-PAGE analysis --- leguminous cover crop --- vetch --- double cropping --- grain yield --- N uptake --- N use efficiency --- rice --- hierarchical patch dynamics --- cropping system design --- up-scaling --- vineyard system --- complexity --- organization --- cropping systems --- water --- nitrogen --- WHCNS --- scenario analyses --- maize production --- nitrogen use efficiency --- nitrogen nutrition --- Acidic soil --- crop rotation --- enzyme activities --- green manure --- sustainable yield index --- nutrient balance --- crop residue incorporation --- straw decomposition --- residue C and N release --- SOC and STN stocks --- cover crop --- manure --- nitrate --- nitrogen --- cereal rye --- maize --- no-tillage --- cover crop --- irrigation --- weed suppression --- gross margin --- faba bean --- forage pea --- fall grazing --- cover crop --- catch crop --- nutrient cycling --- cropping systems --- sustainable crop production --- agroecology --- nutrient use efficiency --- water use efficiency --- environmental quality

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210121 9783039210138 Year: Pages: 280 DOI: 10.3390/books978-3-03921-013-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210145 9783039210152 Year: Pages: 256 DOI: 10.3390/books978-3-03921-015-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search