Search results: Found 8

Listing 1 - 8 of 8
Sort by
Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods

Authors: --- ---
ISBN: 9789811052682 9789811052699 Year: Pages: 330 DOI: https://doi.org/10.1007/978-981-10-5269-9 Language: English
Publisher: Springer Nature Grant: Society of Sago Palm Studies
Subject: Botany
Added to DOAB on : 2018-07-02 11:43:55
License:

Loading...
Export citation

Choose an application

Abstract

This book addresses a wide variety of events and technologies concerning the sago palm, ranging from its botanical characteristics, culture and use to social conditions in the places where it is grown, in order to provide a record of research findings and to benefit society. It discusses various subjects, including the sago palm and related species; differentiation of species of starch-producing palm; habitat, morphological, physiological and growth characteristics; culture and management; productivity of carbon dioxide; starch extraction and manufacture; characteristics and utilization of starch; and cultural anthropological and folkloristic aspects.Problems such as food shortages due to increasing populations, global warming and climate change, and decreasing reserves of oil and other underground resources, have become more pressing in recent years. In the context of these problems, the book examines the role of the sago palm in sustainable food production, in the manufacture of other foodstuffs, as a raw material for ethanol and in the manufacture of biodegradable plastics. In addition to academics, this book will be useful to researchers and government officials working for international agencies, national governments, municipalities, and other research organizations; technicians, researchers, managers, entrepreneurs, and others working in industries such as agriculture, plant production, food production, manufacturing, chemical engineering, energy production, and distribution.

Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199211 Year: Pages: 130 DOI: 10.3389/978-2-88919-921-1 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The discipline of Synthetic Biology has recently emerged at the interface of biology and engineering. The definition of Synthetic Biology has been dynamic over time ever since, which exemplifies that the field is rapidly moving and comprises a broad range of research areas. In the frame of this Research Topic, we focus on Synthetic Biology approaches that aim at rearranging biological parts/ entities in order to generate novel biochemical functions with inherent metabolic activity. This Research Topic encompasses Pathway Engineering in living systems as well as the in vitro assembly of biomolecules into nano- and microscale bioreactors. Both, the engineering of metabolic pathways in vivo, as well as the conceptualization of bioreactors in vitro, require rational design of assembled synthetic pathways and depend on careful selection of individual biological functions and their optimization. Mathematical modelling has proven to be a powerful tool in predicting metabolic flux in living and artificial systems, although modelling approaches have to cope with a limitation in experimentally verified, reliable input variables. This Research Topic puts special emphasis on the vital role of modelling approaches for Synthetic Biology, i.e. the predictive power of mathematical simulations for (i) the manipulation of existing pathways and (ii) the establishment of novel pathways in vivo as well as (iii) the translation of model predictions into the design of synthetic assemblies.

Carbohydrate Intake in Non-communicable Disease Prevention and Treatment

Author:
ISBN: 9783038978183 9783038978190 Year: Pages: 156 DOI: 10.3390/books978-3-03897-819-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

In 2011, carbohydrates provided 63% of the dietary energy intake to the world’s population. Historically, carbohydrate-rich diets have been associated with good health and longevity but there has been a move away from traditional carbohydrate-rich diets, with refined carbohydrate taking much criticism for contributing to non-communicable disease. The aim of this Special Issue is to discuss the appropriate use of environmentally sustainable carbohydrate-rich foods in the modern diet in developing and developed countries in the context of prevention and treatment of non-communicable disease.

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Recent Advances in Biocatalysis and Metabolic Engineering for Biomanufacturing

Author:
ISBN: 9783039215744 9783039215751 Year: Pages: 278 DOI: 10.3390/books978-3-03921-575-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.

Keywords

artificial self-sufficient P450 --- bioplastics --- dodecanoic acid --- Nylon 12 --- ?-aminododecanoic acid --- immobilization --- fluorescein diacetate --- polyurethane foam --- biofilm --- total enzymatic activity --- biocatalysis --- Combi-CLEAs --- cascade reactions --- immobilization --- Myceliophthora --- glyoxal oxidase --- 5-hydroxymethylfurfural --- aerobic methane bioconversion --- bioreactor --- string film reactor --- mass transfer performance --- cross-linked enzyme aggregate --- amyloglucosidase --- magnetic nanoparticles --- bovine serum albumin --- polyethyleneimine --- starch hydrolysis --- Eversa --- interfacial activation --- lipase immobilization --- enzyme stabilization --- enzyme modulation --- metabolic engineering --- synthetic biology --- 3-hydroxypropionic acid --- microbial production --- fatty acid synthesis --- acetate --- redox enzymes --- FTIR spectroscopy --- small molecules --- Corynebacterium glutamicum --- Pvgb --- tunable expression system --- expression vectors --- synthetic biology --- Vitreoscilla --- vgb --- biocatalysts --- biocatalytic reaction --- Methylosinus sporium strain 5 --- soluble methane monooxygenase --- C–H activation --- O2 activation --- synthetic biology --- metabolic engineering --- microbial cell factory --- synthetic metabolic pathways --- mannose --- magnetic nanoparticles --- immobilization --- whole cell --- specific recognition --- 12-hydroxydodecanoic acid --- dodecanoic acid --- CYP153A --- whole-cell biotransformation --- Candida antarctica Lipase B --- transesterification --- polymer functionalization --- tetraethylene glycol --- poly(ethylene glycol) --- hydrogenase --- bio-hydrogen --- chemicals addition --- review --- (?)-?-bisabolol --- mevalonate (MVA) --- mevalonate kinase 1 --- Methanosarcina mazei --- fed-batch fermentation --- monoterpene --- prokaryotic microbial factory --- metabolic engineering --- MEP pathway --- MEV pathway --- n/a

Physiological Responses to Abiotic and Biotic Stress in Forest Trees

Authors: ---
ISBN: 9783039215140 9783039215157 Year: Pages: 294 DOI: 10.3390/books978-3-03921-515-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Keywords

drought --- mid-term --- non-structural carbohydrate --- soluble sugar --- starch --- Pinus massoniana --- salinity --- Carpinus betulus --- morphological indices --- gas exchange --- osmotic adjustment substances --- antioxidant enzyme activity --- ion relationships --- Populus simonii Carr. (poplar) --- intrinsic water-use efficiency --- tree rings --- basal area increment --- long-term drought --- hydrophilic polymers --- Stockosorb --- Luquasorb --- Konjac glucomannan --- photosynthesis --- ion relation --- Fagus sylvatica L. --- Abies alba Mill. --- N nutrition --- mixed stands --- pure stands --- soil N --- water relations --- 24-epiBL application --- salt stress --- ion contents --- chloroplast ultrastructure --- photosynthesis --- Robinia pseudoacacia L. --- elevation gradient --- forest type --- growth --- leaf properties --- Pinus koraiensis Sieb. et Zucc. --- Heterobasidion parviporum --- Heterobasidion annosum --- Norway spruce --- disturbance --- water availability --- pathogen --- infection --- Carpinus turczaninowii --- salinity treatments --- ecophysiology --- photosynthetic responses --- organic osmolytes --- ion homeostasis --- antioxidant enzymes --- glutaredoxin --- subcellular localization --- expression --- tapping panel dryness --- defense response --- rubber tree --- Ca2+ signal --- drought stress --- living cell --- Moso Bamboo (Phyllostachys edulis) --- plasma membrane Ca2+ channels --- signal network --- Aleppo pine --- Greece --- photosynthesis --- water potential --- ?13C --- sap flow --- canopy conductance --- climate --- molecular cloning --- functional analysis --- TCP --- DELLA --- GA-signaling pathway --- Fraxinus mandshurica Rupr. --- wood formation --- abiotic stress --- nutrition --- gene regulation --- tree --- bamboo forest --- cold stress --- physiological response --- silicon fertilization --- plant tolerance --- reactive oxygen species --- antioxidant activity --- proline --- Populus euphratica --- salt stress --- salicylic acid --- malondialdehyde --- differentially expressed genes --- n/a

Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search