Search results: Found 57

Listing 1 - 10 of 57 << page
of 6
>>
Sort by
Alloy Steel: Properties and Use First-Principles Quantum Mechanical Approach to Stainless Steel Alloys (Book chapter)

Authors: --- --- --- --- et al.
ISBN: 9789533074849 Year: DOI: 10.5772/26131 Language: English
Publisher: IntechOpen Grant: FP7 Ideas: European Research Council - 228074
Subject: Science (General)
Added to DOAB on : 2019-01-17 11:47:57
License:

Loading...
Export citation

Choose an application

Abstract

Accurate description of materials requires the most advanced atomic-scale techniques from both experimental and theoretical areas. In spite of the vast number of available techniques, however, the experimental study of the atomic-scale properties and phenomena even in simple solids is rather difficult. In steels the challenges become more complex due to the interplay between the structural, chemical and magnetic effects. On the other hand, advanced computational methods based on density functional theory ensure a proper platform for studying the fundamental properties of steel materials from first-principles. In 1980’s the first-principles description of the thermodynamic properties of elemental iron was still on the borderline of atomistic simulations. Today the numerous application- oriented activities at the industrial and academic sectors are paired by a rapidly increasing scientific interest. This is reflected by the number of publications on ab initio steel research, which has increased from null to about one thousand within the last two decades. Our research group has a well established position in developing and applying computational codes for steel related applications. Using our ab initio tools, we have presented an insight to the electronic and magnetic structure, and micromechanical properties of austenite and ferrite stainless steel alloys. In the present contribution, we review the most important developments within the ab initio quantum mechanics aided steel design with special emphasis on the role of magnetism on the fundamental properties of alloy steels.

Keywords

steel --- stainless steel

Modeling of Helium Bubble Nucleation and Growth in Neutron Irradiated RAFM Steels

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783866449015 Year: Volume: 6 Pages: XXII, 159 p. DOI: 10.5445/KSP/1000029282 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Reduced Activation Ferritic/Martensitic (RAFM) steels are first candidate structural materials in future fusion technology. In this work a physically based model using Rate Theory is developed to describe nucleation and growth of helium bubbles in neutron irradiated RAFM steels. Several modifications of the basic diffusion limited model are presented allowing a comprehensive view of clustering effects and their influence on expected helium bubble size distributions.

Alloy Steels

Author:
ISBN: 9783038428831 9783038428848 Year: Pages: X, 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy --- General and Civil Engineering
Added to DOAB on : 2018-05-04 14:03:05
License:

Loading...
Export citation

Choose an application

Abstract

Alloy steels play a pivotal role in modern society. Their continued development improves the human condition for everyone on earth. Their broad use has resulted in a wide variety of continuing challenges to address economic, manufacturing, and industrial issues. This book contains twenty-three papers covering a wide cross-section of alloy steels and technical problems. Readers interested in solving current manufacturing and application problems will find this issue helpful. The papers contained within cover a wide range of topics by a broad set of authors from across the globe. There are papers covering structure–property relations on various alloys. Other papers discuss the proper processing of alloy steels through the welding, electroslag remelting, and rolling processes. A significant number of the papers cover optimizing the heat treatment of traditional alloys as well as new alloys. There are papers that concentrate on providing real-world performance data on alloy steels, an important but under-studied topic. Of particular interest is a review on the welding of austenitic and duplex stainless steels that gives neophytes and experienced researchers an excellent introduction to the state-of-the-art. This collection of work should be valuable to anyone interested in alloy steels.

Keywords

Steels --- Alloy --- Welding --- Rolling --- Corrosion --- Stainless Steel --- Casting

Manufacturing and Application of Stainless Steels

Author:
ISBN: 9783039286508 / 9783039286515 Year: Pages: 260 DOI: 10.3390/books978-3-03928-651-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Stainless steels represent a quite interesting material family, both from a scientific and commercial point of view, following to their excellent combination in terms of strength and ductility together with corrosion resistance. Thanks to such properties, stainless steels have been indispensable for the technological progress during the last century and their annual consumption increased faster than other materials. They find application in all these fields requiring good corrosion resistance together with ability to be worked into complex geometries. Despite to their diffusion as a consolidated materials, many research fields are active regarding the possibility to increase stainless steels mechanical properties and corrosion resistance by grain refinement or by alloying by interstitial elements. At the same time innovations are coming from the manufacturing process of such a family of materials, also including the possibility to manufacture them starting from metals powder for 3D printing. The Special Issue scope embraces interdisciplinary work covering physical metallurgy and processes, reporting about experimental and theoretical progress concerning microstructural evolution during processing, microstructure-properties relations, applications including automotive, energy and structural.

Fatigue crack detection on structural steel members by using ultrasound excited thermography = Erkennung von Ermüdungsrissen in Stahlbauteilen durch ultraschallangeregte Thermografie

Author:
Book Series: Berichte zum Stahl- und Leichtbau / Karlsruher Institut für Technologie, Versuchsanstalt für Stahl, Holz und Steine, Stahl- und Leichtbau ISSN: 21987912 ISBN: 9783731504177 Year: Volume: 3 Pages: XVI, 334 p. DOI: 10.5445/KSP/1000048191 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 19:59:17
License:

Loading...
Export citation

Choose an application

Abstract

Ultrasound excitation of structural steel members leads to localised energy dissipation at existent fatigue cracks and thus allows for thermographic flaw detection. Essential effects on the defect-selective heating, such as flaw size, plate thickness, crack mouth opening or static preload, are systematically investigated. Laser vibrometry measurements of the crack edges, theoretical modelling of frictional heating and numerical simulations contribute to the understanding of the involved physics.

Microstructure and Mechanical Behavior of Deep Drawing DC04 Steel at Different Length Scales

Author:
ISBN: 9783866449671 Year: Pages: XIII, 162 p. DOI: 10.5445/KSP/1000032165 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

The deformation behavior of steels is strongly influenced by their microstructure which is a result of the alloying elements and thermal treatments. In this work, the microstructure and the deformation behavior of a non-alloyed deep drawing DC04 steel was investigated. The microstructure was analyzed during heat treatment by EBSD, then microcompression experiments were performed on selected microstructural units and then bulk steel samples were mechanically tested by tensile experiments.

Work-hardening of dual-phase steel

Author:
Book Series: Schriftenreihe Kontinuumsmechanik im Maschinenbau / Karlsruher Institut für Technologie, Institut für Technische Mechanik - Bereich Kontinuumsmechanik ISSN: 2192693X ISBN: 9783731505136 Year: Volume: 7 Pages: XIII, 175 p. DOI: 10.5445/KSP/1000054047 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Dual-phase steels exhibit good mechanical properties due to a microstructure of strong martensitic inclusions embedded in a ductile ferritic matrix. This work presents a two-scale model for the underlying work-hardening effects; such as the distinctly different hardening rates observed for high-strength dual-phase steels. The model is based on geometrically necessary dislocations and comprises the average microstructural morphology as well as a direct interaction between the constituents.

Bemessung von Erzeugnissen aus Stahlguss unter vorwiegend ruhender Beanspruchung

Author:
Book Series: Berichte zum Stahl- und Leichtbau / Karlsruher Institut für Technologie, Versuchsanstalt für Stahl, Holz und Steine, Stahl- und Leichtbau ISSN: 21987912 ISBN: 9783731505600 Year: Volume: 5 Pages: XVIII, 210 p. DOI: 10.5445/KSP/1000057630 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Since the internal condition directly influences the calculated component resistance by using cast steel, the requirement of a quality grade already has to be determined during the design and planning phase. However, there is currently no decision-making on the selection of a quality level depending on the load. Therefore, two design concepts are developed for the load-bearing capacity of steel castings depending on the grades.

Physical Metallurgy of High Manganese Steels

Authors: ---
ISBN: 9783039218561 9783039218578 Year: Pages: 212 DOI: 10.3390/books978-3-03921-857-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.

Keywords

medium-manganese steel --- TRIP --- strain-rate sensitivity --- Lüders band --- serrated flow --- in-situ DIC tensile tests --- TWIP steel --- deformation twinning --- serrated flow --- dynamic strain aging --- damage --- fracture --- medium-manganese --- forging --- austenite reversion --- mechanical properties --- microstructure --- D&amp --- P steel --- processing --- microstructure --- phase transformation --- dislocation density --- mechanical properties --- MMn steel X20CrNiMnVN18-5-10 --- V alloying --- corrosion resistance --- precipitations --- ultrafine grains --- high-manganese steels --- high-entropy alloys --- alloy design --- plastic deformation --- annealing --- microstructure --- texture --- mechanical properties --- neutron diffraction --- austenite stability --- medium manganese steel --- double soaking --- localized deformation --- medium-Mn steel --- hot-stamping --- double soaking --- continuous annealing --- quenching and partitioning --- high strength steel --- high manganese steel --- crash box --- lightweight --- multiscale simulation --- high-Mn steels --- twinning induced plasticity --- cold rolling --- recrystallization annealing --- grain refinement --- strengthening --- austenitic high nitrogen steel (HNS) --- cold deformation --- fatigue --- high manganese steel --- warm rolling --- processing --- microstructure --- texture --- mechanical properties --- deformation behavior --- high-manganese steel --- deep rolling --- TWIP --- TRIP --- near surface properties --- residual stresses --- fatigue behavior --- intercritical annealing --- medium manganese steel --- phase field simulation --- medium-Mn steel --- austenite-reversed-transformation --- retained austenite --- hydrogen embrittlement --- ultrafine-grained microstructure --- strain-hardening behavior --- n/a

Ultrafine-Grained Metals

Author:
ISBN: 9783038425243 9783038425250 Year: Pages: VIII, 181 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2017-10-27 12:58:00
License:

Loading...
Export citation

Choose an application

Abstract

Ultrafine-grained metallic materials produced by severe plastic deformation methods are at the cutting edge of modern materials science. UFG-metals exhibit outstanding properties which make them very interesting for structural or functional engineering applications. Fifteen articles in this special issue address a broad variety of topics: New developments in severe plastic deformation techniques, advances in modeling and simulation of the severe plastic deformation processes, mechanical properties under monotonic and cyclic loading of homogenous and graded UFG structures, dominating deformation mechanisms in UFG materials, advances and strategies for high conductivity UFG-materials, correlation between severe plastic deformation parameters and resulting materials properties and peculiarities in the corrosion behavior of UFG materials. The book covers latest results on ultrafine-grained titanium, aluminum and copper alloys and on UFG iron and steels and thus provides a deep insight to current research activities in the field of ultrafine-grained metals.

Listing 1 - 10 of 57 << page
of 6
>>
Sort by
Narrow your search