Search results: Found 8

Listing 1 - 8 of 8
Sort by
New Technologies in Protective Coatings

Authors: ---
ISBN: 9789535134916 9789535134923 Year: Pages: 132 DOI: 10.5772/65573 Language: English
Publisher: IntechOpen
Subject: General and Civil Engineering
Added to DOAB on : 2019-10-03 07:51:50

Loading...
Export citation

Choose an application

Abstract

Materials are at the center of all technological advances; it is evident in considering the spectacular progress that has been made in fields as diverse as engineering, medicine, biology, etc. Materials science and technology must develop researches allowing the generation of new methods of protection to reduce fundamentally the losses of human life as well as the economic ones. The former are impossible of quantifying, while the latter are highly significant; thus, only those derived from corrosive processes in their different forms reach, in technologically developed countries, about 4% of the Gross National Product (GNP), while those derived from fire action range from 0.5 to 1.0% of the mentioned GNP. The book, in the different chapters, displays original systems of superficial protection and of low environmental impact to minimize the losses by corrosion and the fire action.

Advance of Polymers Applied to Biomedical Applications: Cell Scaffolds

Authors: ---
ISBN: 9783038970330 9783038970347 Year: Pages: 406 DOI: 10.3390/books978-3-03897-034-7 Language: englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-09-04 13:51:22
License:

Loading...
Export citation

Choose an application

Abstract

Since Langer’s seminal work, polymers have been on every corner of tissue engineering. The roles of bioresorbable polymers, as a scaffold, are not merely structural, providing three-dimensional (3D) homing sites to cells, but also functional at their interface with the cells. The polymeric scaffolds actively act as both biochemical and physical cues for cell behaviors, such as adhesion, growth, proliferation, and differentiation. Polymers and cells could interact further with each other mutually, sensing and responding to the signals from the partner. Technological advances in this direction, including chemical modification of polymer scaffolds, highly cytocompatible hybrid materials/composites, dynamic scaffolds, control of juxtacrine interactions, and 3D bioprinting and microfluidic devices, ensure the advances in polymers as cell scaffolds. The detection and characterization methods for cell-material interactions and cell behaviors have been greatly improved, and new characterization techniques have emerged. Recent years have witnessed a quantum leap of progress in tissue engineering and regenerative medicine, and this edited book illustrates some of the advances in polymers as cell scaffolds.

Corrosion Inhibitors, Principles and Recent Applications

Author:
ISBN: 9789535139171 9789535139188 9789535140948 Year: Pages: 262 DOI: 10.5772/intechopen.70101 Language: English
Publisher: IntechOpen
Subject: General and Civil Engineering
Added to DOAB on : 2019-10-03 07:51:51

Loading...
Export citation

Choose an application

Abstract

To protect metals or alloys from corrosion, some methods can be used such as isolating the structure from the aggressive media or compensating the loss of electrons from the corroded structure. The use of corrosion inhibitors may include organic and inorganic compounds that adsorb on the metallic structure to isolate it from its surrounding media to decrease oxidation-reduction processes. This book collects new developments about corrosion inhibitors and their recent applications.

Manufacturing and Surface Engineering

Author:
ISBN: 9783038429791 9783038429807 Year: Pages: VI, 134 Language: english
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials --- Chemistry (General)
Added to DOAB on : 2018-08-09 15:59:11
License:

Loading...
Export citation

Choose an application

Abstract

The desired properties of surface components include the improvement of different properties, such as aesthetic appearance, oxidation resistance, wear resistance, mechanical properties, electronic or electrical properties, thermal insulation, wear, triboemission and corrosion resistance through barriers.These properties can be enhanced using different methods, such as by adding a coating. Nevertheless, the bulk of the material or substrate cannot be considered independent of the surface treatment. Metal cutting is one of the general machining methods used to achieve high accuracy and productivity for metal parts.The topics of the book “Manufacturing and Surface Engineering” include the full range of surface engineering aspects, i.e., surface integrity, contact mechanics, friction and wear, coatings and surface treatments, multiscale tribology, computational methods, and optimization techniques applied in surface engineering.Recent experimental works by Zhang, Li, Zhang, Zhang and Duan, and by other researchers outlined that coating layer surface treatments may increase the damping behavior of thin-walled mechanical components vibrating in flexural conditions. Nevertheless, it was also experimentally found by the authors that most of these coating surface treatments had a negligible or null effect with respect to the vibrational damped response in testing or operating conditions. Ciniero, Le Rouzic and Reddyhoff report the potential of measuring charged particle emissions and/or tribocharging for the study or monitoring of the failure of coatings. The spatial information of triboemission allows the identification of the exact time and location of the failure. The evolution of the failure during sliding and the change in the characteristics of the contact are also monitored. After studying the effect of the Ti content on the performance of FeCoCrNiAlTix, He, Zhang, Lin, Zhang, Dong and Li establish that the structure of FeCoCrNiAlTix coatings consists of two kinds of BCC phases. With the continuous increase in Ti content, the number of eutectic structures decreases, accompanying the increase in the proeutectic phase and the Ti-rich second phase is precipitated out. Abutaha, Abdul Razak, and Ibrahim developed an experimental investigation into the engineering properties of concrete incorporating POC as an aggregate and filler material. This approach offers an environmentally-friendly solution to the ongoing waste problems associated with palm oil waste material.Liu and Janssen studied the effects of impact on the wear of the structural steel S235 in various liquids. When the impact is small, corrosion plays a dominant role, thus the sample in seawater wears the least due to the beneficial interaction with abrasion. However, when the impact is large, the wear rates of three liquids do not show a noticeable difference, because the wear mechanism changes from material removal to mainly plastic deformation. The influence of corrosion becomes a minor influencing factor when subject to impact.Vázquez Martínez, Salguero Gómez, Batista Ponce and Botana Pedemonte analyzed the different treatments obtained through setup parameter combinations to obtain samples with widely varying features, according to the thickness of the treated layer and the incidence depth of the laser beam. This diversity of samples shows a range of color tonalities from soft gold to medium gray and blue. Microstructural changes and oxidation layer generation provide a significant increase in the material hardness, reaching Vickers hardness values close to 1000 HV for high intensity treatments.Takada and Sasahara studied the FSB process using four levels of tip radius burnishing tools and investigated their effect on surface roughness, hardness and residual stress for a 0.45% C steel shaft. The thickness of the hardened layer increased as the tool tip radius decreased. The hardness value of the processed layer reached 600 HV. The residual stress on the processed surface was compressive when a radius tool with a smaller tip was used, and the residual stress turned tensile when a radius tool with a larger tip was used.Vereschaka, Kataeva, Sitnikov, Aksenenko, Oganyan and Sotova searched for patterns that allow a reliable justification for the choice of the composition of coatings and their micro- and nanostructures depending on the material being machined and the cutting regimes (in particular, the cutting speed).Amadori, Catania and Casagrande investigated experimentally eight different innovative composite solutions. A significant increase in the damping behavior was observed for all of these solutions with respect to the uncoated components, and with respect to the already known solutions that have previously been investigated by these authors and other researchers. The coating solution employing an Al2O3 powder + matrix, made using a screen-printing and curing technology on an Al alloy substrate, proved to be the most effective technology with respect to the aim of this work. Catania and Strozzi investigated the performance of different solutions in a free and forced flexural vibration response; they propose a simple model based on the assumption of a multi-layer, zig-zag beam, which also locally models the dissipative actions at the interface between the layers. Some virtual prototyping application examples are also reported.

Scientific and Engineering Progress on Aluminum-Based Light-Weight Materials: Research Reports from the German Collaborative Research Center 692

Author:
ISBN: 9783038971962 9783038971979 Year: Pages: 196 DOI: 10.3390/books978-3-03897-197-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering
Added to DOAB on : 2018-09-21 10:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Aluminum-based light-weight materials offer great potential for novel engineering applications, particularly when they are optimized to exhibit high strength and yet provide sufficient reliability. The last decade has thus seen substantial activity in the research fields of high-strength aluminum alloys and aluminum-based composite materials.For twelve years, backed by solid funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), scientists of the Collaborative Research Center, “High-strength aluminum-based light-weight materials for safety components” (SFB 692) at TU Chemnitz, Germany, have contributed to this research area. Our research efforts have been focused on three main areas: ultrafine-grained aluminum alloys produced by severe plastic deformation; aluminum matrix composites; and aluminum-based composite materials (including material combinations such as magnesium/aluminum or steel/aluminum and the corresponding joining and forming technologies). The framework of SFB 692 has served as a base for numerous scientific collaborations between scientists in the fields of materials science, design engineering, production engineering, mechanics, and even economics—in Chemnitz, and with many well-established international experts around the world.In this Special Issue, we present recent results on high-strength aluminum-based light-weight materials that also provide a broad overview of research activities in SFB 692 and elsewhere.

Superhydrophobic Coatings for Corrosion and Tribology

Authors: ---
ISBN: 9783039217847 / 9783039217854 Year: Pages: 166 DOI: 10.3390/books978-3-03921-785-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.

Tribological Performance of Artificial Joints

Authors: ---
ISBN: 9783039210787 / 9783039210794 Year: Pages: 178 DOI: 10.3390/books978-3-03921-079-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Surgery
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of the implants could be adversely affected due to the loss of materials in the form of particles or ions as the bearing surfaces articulate against earch other. The consequent tissue and immune response to the wear products, remain one of the key factors of their failure. Tribology has been defined as the science and technology of interacting surfaces in relative motion and all related wear products (e.g., particles, ions, etc.). Over the last few decades, in an attempt to understand and improve joint replacement technology, the tribological performance of several material combinations have been studied experimentally and assessed clinically. In addition, research has focused on the biological effects and long term consequences of wear products. Improvements have been made in manufacturing processes, precision engineering capabilities, device designs and materials properties in order to minimize wear and friction and maximize component longevity in vivo.

Micro/Nano Manufacturing

Authors: ---
ISBN: 9783039211692 / 9783039211708 Year: Pages: 208 DOI: 10.3390/books978-3-03921-170-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies.

Keywords

fluid jet polishing --- deterministic polishing --- variable pitch path --- residual error optimization --- path adaptability --- chatter identification --- three-dimensional elliptical vibration cutting --- empirical mode decomposition --- intrinsic mode function --- feature extraction --- micro-EDM molds --- micro-lens array --- contactless embossing --- friction coefficient --- micro 3D printing --- micro stereolithography --- process parameter optimization --- Taguchi’s method --- multi-objective particle swarm optimization --- flow control --- culture dish adapter --- small recess structure --- closed environment --- perfusion culture --- optical encoder --- grating --- blaze --- injection molding --- micro assembly --- active alignment --- opto-ASIC --- wafer-level optics --- antireflection nanostructure --- microlens array mold --- ultraprecision machining --- anodic aluminum oxide --- spatial uncertainty modeling --- additive manufacturing --- uncertainty quantification --- Image segmentation --- gaussian process modeling --- additive manufacturing --- selective laser melting --- surface roughness --- design of experiments --- Ti6Al4V --- SERS --- Surface-enhanced Raman scattering --- nanosphere array --- nanocone array --- hot embossing --- nanoimprinting --- plasma nitriding --- micro-nozzle --- micro-spring --- nitrogen supersaturation --- hardening --- hydrophobicity --- stiffness control --- product development --- conceptual design --- micro assembly --- data structure --- design for manufacturability --- low PC clinker --- Portland limestone ternary fiber–cement nanohybrids --- flexural strength --- TGA/dTG --- XRD --- MIP --- water impermeability tests --- micro and nano manufacturing --- micro-fluidics --- micro-optics --- micro and nano additive manufacturing --- micro-assembly --- surface engineering and interface nanotechnology --- micro factories --- micro reactors --- micro sensors --- micro actuators

Listing 1 - 8 of 8
Sort by
Narrow your search