Search results: Found 2

Listing 1 - 2 of 2
Sort by
Manufacturing and Surface Engineering

Author:
ISBN: 9783038429791 9783038429807 Year: Pages: VI, 134 Language: english
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials --- Chemistry (General)
Added to DOAB on : 2018-08-09 15:59:11
License:

Loading...
Export citation

Choose an application

Abstract

The desired properties of surface components include the improvement of different properties, such as aesthetic appearance, oxidation resistance, wear resistance, mechanical properties, electronic or electrical properties, thermal insulation, wear, triboemission and corrosion resistance through barriers.These properties can be enhanced using different methods, such as by adding a coating. Nevertheless, the bulk of the material or substrate cannot be considered independent of the surface treatment. Metal cutting is one of the general machining methods used to achieve high accuracy and productivity for metal parts.The topics of the book “Manufacturing and Surface Engineering” include the full range of surface engineering aspects, i.e., surface integrity, contact mechanics, friction and wear, coatings and surface treatments, multiscale tribology, computational methods, and optimization techniques applied in surface engineering.Recent experimental works by Zhang, Li, Zhang, Zhang and Duan, and by other researchers outlined that coating layer surface treatments may increase the damping behavior of thin-walled mechanical components vibrating in flexural conditions. Nevertheless, it was also experimentally found by the authors that most of these coating surface treatments had a negligible or null effect with respect to the vibrational damped response in testing or operating conditions. Ciniero, Le Rouzic and Reddyhoff report the potential of measuring charged particle emissions and/or tribocharging for the study or monitoring of the failure of coatings. The spatial information of triboemission allows the identification of the exact time and location of the failure. The evolution of the failure during sliding and the change in the characteristics of the contact are also monitored. After studying the effect of the Ti content on the performance of FeCoCrNiAlTix, He, Zhang, Lin, Zhang, Dong and Li establish that the structure of FeCoCrNiAlTix coatings consists of two kinds of BCC phases. With the continuous increase in Ti content, the number of eutectic structures decreases, accompanying the increase in the proeutectic phase and the Ti-rich second phase is precipitated out. Abutaha, Abdul Razak, and Ibrahim developed an experimental investigation into the engineering properties of concrete incorporating POC as an aggregate and filler material. This approach offers an environmentally-friendly solution to the ongoing waste problems associated with palm oil waste material.Liu and Janssen studied the effects of impact on the wear of the structural steel S235 in various liquids. When the impact is small, corrosion plays a dominant role, thus the sample in seawater wears the least due to the beneficial interaction with abrasion. However, when the impact is large, the wear rates of three liquids do not show a noticeable difference, because the wear mechanism changes from material removal to mainly plastic deformation. The influence of corrosion becomes a minor influencing factor when subject to impact.Vázquez Martínez, Salguero Gómez, Batista Ponce and Botana Pedemonte analyzed the different treatments obtained through setup parameter combinations to obtain samples with widely varying features, according to the thickness of the treated layer and the incidence depth of the laser beam. This diversity of samples shows a range of color tonalities from soft gold to medium gray and blue. Microstructural changes and oxidation layer generation provide a significant increase in the material hardness, reaching Vickers hardness values close to 1000 HV for high intensity treatments.Takada and Sasahara studied the FSB process using four levels of tip radius burnishing tools and investigated their effect on surface roughness, hardness and residual stress for a 0.45% C steel shaft. The thickness of the hardened layer increased as the tool tip radius decreased. The hardness value of the processed layer reached 600 HV. The residual stress on the processed surface was compressive when a radius tool with a smaller tip was used, and the residual stress turned tensile when a radius tool with a larger tip was used.Vereschaka, Kataeva, Sitnikov, Aksenenko, Oganyan and Sotova searched for patterns that allow a reliable justification for the choice of the composition of coatings and their micro- and nanostructures depending on the material being machined and the cutting regimes (in particular, the cutting speed).Amadori, Catania and Casagrande investigated experimentally eight different innovative composite solutions. A significant increase in the damping behavior was observed for all of these solutions with respect to the uncoated components, and with respect to the already known solutions that have previously been investigated by these authors and other researchers. The coating solution employing an Al2O3 powder + matrix, made using a screen-printing and curing technology on an Al alloy substrate, proved to be the most effective technology with respect to the aim of this work. Catania and Strozzi investigated the performance of different solutions in a free and forced flexural vibration response; they propose a simple model based on the assumption of a multi-layer, zig-zag beam, which also locally models the dissipative actions at the interface between the layers. Some virtual prototyping application examples are also reported.

Product/Process Fingerprint in Micro Manufacturing

Author:
ISBN: 9783039210343 / 9783039210350 Year: Pages: 274 DOI: 10.3390/books978-3-03921-035-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

micro-injection moulding --- quality assurance --- process monitoring --- micro metrology --- positioning platform --- Halbach linear motor --- commercial control hardware --- diffractive optics --- gratings --- microfabrication --- computer holography --- manufacturing signature --- process fingerprint --- Fresnel lenses --- injection compression molding --- injection molding --- micro structures replication --- confocal microscopy --- optical quality control --- uncertainty budget --- optimization --- precision injection molding --- quality control --- process monitoring --- product fingerprint --- process fingerprint --- electrical discharge machining --- electrical discharge machining (EDM) --- surface roughness --- surface integrity --- optimization --- desirability function --- satellite drop --- electrohydrodynamic jet printing --- charge relaxation time --- laser ablation --- superhydrophobic surface --- process fingerprint --- product fingerprint --- surface morphology --- artificial compound eye --- multi-spectral imaging --- lithography --- spectral splitting --- plasma-electrolytic polishing --- PeP --- surface modification --- finishing --- electro chemical machining --- ECM --- Electro sinter forging --- resistance sintering --- electrical current --- fingerprints --- electrical discharge machining --- micro drilling --- process monitoring --- quality control --- electrochemical machining (ECM) --- process control --- current monitoring --- current density --- surface roughness --- inline metrology --- haptic actuator --- impact analysis --- high strain rate effect --- damping --- 2-step analysis --- micro-grinding --- bioceramics --- materials characterisation --- dental implant --- microinjection moulding --- process fingerprints --- flow length --- quality assurance --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2019 (1)

2018 (1)