Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Motion Compensation for Near-Range Synthetic Aperture Radar Applications

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik ISSN: 18684696 ISBN: 9783866449060 Year: Volume: 67 Pages: XII, 149 p. DOI: 10.5445/KSP/1000029383 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

The work focuses on the analysis of influences of motion errors on near-range SAR applications and design of specific motion measuring and compensation algorithms. First, a novel metric to determine the optimum antenna beamwidth is proposed. Then, a comprehensive investigation of influences of motion errors on the SAR image is provided. On this ground, new algorithms for motion measuring and compensation using low cost inertial measurement units (IMU) are developed and successfully demonstrated.

Sea Surface Roughness Observed by High Resolution Radar

Authors: --- --- ---
ISBN: 9783039217465 / 9783039217472 Year: Pages: 202 DOI: 10.3390/books978-3-03921-747-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Oceanography
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Changes in sea surface roughness are usually associated with a change in the sea surface wind field. This interaction has been exploited to measure sea surface wind speed by scatterometry. A number of features on the sea surface associated with changes in roughness can be observed by synthetic aperture radar (SAR) because of the change in Bragg backscatter of the radar signal by damping of the resonant ocean capillary waves. With various radar frequencies, resolutions, and modes of polarization, sea surface features have been analyzed in numerous campaigns, bringing various datasets together, thus allowing for new insights into small-scale processes at a larger areal coverage. This Special Issue aims at investigating sea surface features detected by high spatial resolution radar systems, such as SAR.

Recent Advances in Remote Sensing for Crop Growth Monitoring

ISBN: 9783038422266 9783038422273 Year: Pages: XX, 386 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-08-19 08:32:15
License:

Loading...
Export citation

Choose an application

Abstract

This special issue book gathers sixteen papers focusing on the application of remote sensing techniques to crop growth monitoring. The studies feature multi-scale and multi-source remotely sensed data, a combination of empirical and physical approaches, and a range of topics on crop growth parameters estimation and crop mapping. It is recommended to graduate students, professors, scientists and engineers who have broad interests in the agricultural applications of remote sensing.

Ten Years of TerraSAR-X—Scientific Results

Authors: --- ---
ISBN: 9783038977247 9783038977254 Year: Pages: 422 DOI: 10.3390/books978-3-03897-725-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue is a collection of papers addressing the scientific use of data acquired in the course of the TerraSAR-X mission 10 years after launch. The articles deal with the mission itself, the accuracy of the products, with differential interferometry, and with applications in the domains cryosphere, oceans, wetlands, and urban areas.

Keywords

synthetic aperture radar --- TerraSAR-X --- geolocation --- absolute localization accuracy --- stereo sar --- imaging geodesy --- TerraSAR-X --- internal calibration --- geometric and radiometric calibration --- antenna model verification --- antenna pointing determination --- radiometric accuracy --- calibration targets --- long term performance monitoring --- TerraSAR-X --- TanDEM-X --- LEO --- POD --- SLR --- SAR --- Satellite Laser Ranging --- radar ranging --- satellite orbit --- validation --- InSAR coherence --- NDVI --- damage assessment --- density map --- tsunami --- earthquake --- GIS --- TSX Staring spotlight --- high resolution InSAR --- small-scale movements --- atmospheric phase --- layover --- DSM blending --- SAR --- internal waves --- Andaman Sea --- radar --- satellite --- remote sensing --- SAR --- TerraSAR-X --- operations --- ground segment --- orbit --- mission --- global --- urban footprint --- processing --- validation --- community survey --- sustainability --- synthetic aperture radar --- X-band --- marine --- estuarine --- lacustrine --- riverine --- palustrine --- time-series --- SAR applications --- vegetation --- remote sensing data --- DInSAR --- landslide monitoring --- PSI --- super high-spatial resolution TerraSAR-X images --- pixel selection --- measurement pixels’ density --- synthetic aperture radar --- PolSAR --- TerraSAR-X --- surface water monitoring --- flooded vegetation --- classification --- segmentation --- InSAR --- landslide --- phase unwrapping --- phase demodulation --- TerraSAR-X --- RADARSAT-2 --- ALOS-1 --- ERS --- synthetic aperture radar --- TerraSAR-X --- habitat mapping --- monitoring --- remote sensing --- Wadden Sea --- mussel beds --- intertidal bedforms --- tidal gullies --- remote sensing --- film slicks on the sea surface --- dual co-polarized microwave radar --- surface wind waves --- wave breaking --- Snow Cover Extent (SCE) --- TerraSAR-X --- Landsat --- wet snow --- small Arctic catchments --- satellite time series --- TerraSAR-X --- synthetic aperture radar (SAR), radar mission --- remote sensing --- land subsidence --- TerraSAR-X --- SAR interferometry --- coastal environments --- Venice lagoon --- multi-baseline --- multi-pass --- PS --- DS --- geodetic --- TomoSAR --- D-TomoSAR --- PSI --- robust estimation --- covariance matrix --- InSAR --- SAR --- review --- SAR --- SAR interferometry --- atmospheric propagation delay --- persistent scatterer interferometry --- numerical weather prediction --- stratified atmospheric delay --- zenith path delay --- slant path delay --- interferometry --- surface movement monitoring --- ground control points --- radargrammetry --- automated target recognition --- convolutional neural networks (CNN), deep CNN --- support vector machine --- SVM --- synthetic aperture radar --- TerraSAR-X --- SAR interferometry --- land subsidence --- precise orbit determination --- geometric and radiometric calibration --- PSI

Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

Authors: --- ---
ISBN: 9783039211265 / 9783039211272 Year: Pages: 308 DOI: 10.3390/books978-3-03921-127-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this field

Keywords

SBAS-InSAR --- surface subsidence --- Sentinel-1A --- Wuhan --- engineering construction --- carbonate karstification --- water level changes --- reclamation settlements --- Lingang New City --- time series InSAR analysis --- terraSAR-X --- ENVISAT ASAR --- ALOS PALSAR --- time series analysis --- InSAR --- PS --- landslide --- subsidence --- land reclamation --- urbanization --- risk --- Istanbul --- Turkey --- Persistent Scatterer Interferometry (PSI) --- Sentinel-1 --- uplift --- expansive soils --- dewatering --- London --- synthetic aperture radar (SAR) --- SAR tomography --- deformation monitoring --- persistent scatterer interferometry (PSI) --- urban deformation monitoring --- radar interferometry --- displacement mapping --- spaceborne SAR --- differential interferometry --- differential tomography --- ERS-1/-2 --- PALSAR --- PALSAR-2 --- InSAR --- land subsidence --- reclaimed land --- Urayasu City --- SAR interferometry --- displacement monitoring --- Sentinel-1 --- permanent scatterers --- thermal dilation --- health monitoring --- SAR --- Sentinel-1 --- differential SAR interferometry --- atmospheric component --- modelling --- deformation time series --- validation --- multi-look SAR tomography --- multiple PS detection --- Capon estimation --- Generalized Likelihood Ratio Test --- synthetic aperture radar --- persistent scatterers --- differential interferometry --- tomography --- radar detection --- generalized likelihood ratio test --- sparse signals --- pursuit monostatic --- PS-InSAR --- urban monitoring --- skyscrapers --- urban subsidence --- Copernicus Sentinel-1 --- Persistent Scatterer Interferometry --- SNAP-StaMPS --- Rome --- synthetic aperture radar --- tomography --- polarimetry --- radar detection --- generalized likelihood ratio test --- sparse signals --- geological and geomorphological mapping --- Late-Quaternary deposits --- differential compaction --- multi-temporal DInSAR --- Venetian-Friulian Plain --- subsidence monitoring --- persistent scatterer interferometry --- asymmetric subsidence --- groundwater level variation --- Sepulveda Transit Corridor --- Los Angeles --- synthetic aperture radar --- persistent scatterers --- tomography --- differential interferometry --- polarimetry --- radar detection --- urban areas --- deformation

Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques

Authors: --- ---
ISBN: 9783039211999 / 9783039212002 Year: Pages: 146 DOI: 10.3390/books978-3-03921-200-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.

Earth Observation, Remote Sensing and Geoscientific Ground Investigations for Archaeological and Heritage Research

Author:
ISBN: 9783039211937 / 9783039211944 Year: Pages: 304 DOI: 10.3390/books978-3-03921-194-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book collects 15 papers written by renowned scholars from across the globe that showcase the forefront research in Earth observation (EO), remote sensing (RS), and geoscientific ground investigations to study archaeological records and cultural heritage.Archaeologists, anthropologists, geographers, remote sensing, and archaeometry experts share their methodologies relying on a wealth of techniques and data including, but not limited to: very high resolution satellite images from optical and radar space-borne sensors, air-borne surveys, geographic information systems (GIS), archaeological fieldwork, and historical maps.A couple of the contributions highlight the value of noninvasive and nondestructive laboratory analyses (e.g., neutron diffraction) to reconstruct ancient manufacturing technologies, and of geological ground investigations to corroborate hypotheses of historical events that shaped cultural landscapes.Case studies encompass famous UNESCO World Heritage Sites (e.g., the Nasca Lines in Peru), remote and yet-to-discover archaeological areas in tropical forests in central America, European countries, south Asian changing landscapes, and environments which are arid nowadays but were probably full of woody vegetation in the past.Finally, the reader can learn about the state-of-the-art of education initiatives to train site managers in the use of space technologies in support of their activities, and can understand the legal aspects involved in the application of EO and RS to address current challenges of African heritage preservation.

Keywords

analytic hierarchy process (AHP) --- archaeology --- predictive model --- tumuli --- remote sensing --- multi-criteria --- Saharan Morocco --- airborne laser scanning --- orthophotographs --- archaeological survey --- field reconnaissance --- Arran --- national archaeological mapping programme --- synthetic aperture radar --- subsurface imaging --- microwave penetration --- archaeology --- arid environments --- remote sensing --- Oman --- e-learning --- Earth observation --- education --- capacity development --- cultural and natural heritage --- UNESCO --- photogrammetry --- RPAS --- UAV --- Peru --- geoglyph Pista --- mapping --- drones --- remote sensing --- free satellite imagery --- GoogleEarth --- Bing Maps --- archaeological fieldwork --- arid environments --- basalt desert --- landscape accessibility --- Harra --- Jordan --- archaeological landscapes --- settlements --- historical maps --- Survey of India --- Archaeological Survey of India --- heritage --- colonial studies --- remote sensing --- historical landscapes --- landscape archaeology --- settlements --- colonial studies --- river morphology --- Indus --- floods --- remote sensing --- satellite --- Sentinel-2 --- surface survey --- Roman archaeology --- Sumerian pottery --- neutron techniques --- neutron diffraction --- chemometric analysis --- Mega El Niño --- pampa of Nazca --- Cuenca Pisco --- Rio Grande de Nazca --- grain-size --- volcaniclastic layer --- stratigraphy --- petrography --- Lidar --- GIS --- Mesoamerica --- Archaeology --- Caves --- Landscape --- Ritual --- Visualization --- Maya --- Belize --- Sacred --- automated detection --- OBIA --- LiDAR --- Difference Map --- field monument --- Burial Mound --- Motte-and-Bailey castle --- Ridge and Furrow --- space law --- disaster and conservation management --- Geographic Information System (GIS) --- international boundaries --- Africa --- Cameroon-Nigeria Mixed Commission --- satellite imagery --- Boundary Demarcation --- international law --- relict boundaries --- Earth Observation --- remote sensing --- optical --- SAR --- drone --- airborne LiDAR --- GIS --- OBIA --- neutron diffraction --- archaeological prospection --- pattern recognition --- archaeometry --- geological mapping

Very High Resolution (VHR) Satellite Imagery: Processing and Applications

Authors: ---
ISBN: 9783039217564 / 9783039217571 Year: Pages: 262 DOI: 10.3390/books978-3-03921-757-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing.

Keywords

road extraction --- very high-resolution image --- fast marching method --- semiautomatic --- edge constraint --- beaver mimicry --- beaver dam analogue --- QuickBird --- riparian --- stream restoration --- Worldview --- benthic mapping --- seagrass --- airborne hypespectral imagery --- Worldview-2 --- atmospheric correction --- sunglint correction --- water column correction --- dimensionality reduction techniques --- SVM classification --- linear unmixing --- building detection --- built-up areas extraction --- local feature points --- saliency index --- morphological building index --- Deformable CNN --- Faster R-CNN --- data augmentation --- occluded object detection --- very high-resolution Pléiades imagery --- canopy height model --- acquisition geometry --- forested mountain --- accuracy assessment --- remote sensing imagery --- super-resolution --- ultra-dense connection --- feature distillation --- video satellite --- compensation unit --- urban water mapping --- water index --- shadow detection --- threshold stability --- agriculture parcel segmentation --- superpixels --- consensus --- texture analysis --- multi-resolution segmentation (MRS) --- greenhouse extraction --- over-segmentation index (OSI) --- under-segmentation index (USI) --- error index of total area (ETA) --- composite error index (CEI) --- GaoFen-2 (GF-2) --- synthetic aperture radar --- landslide monitoring --- sub-pixel offset tracking --- Slumgullion landslide --- natural hazards --- large displacements --- remote sensing --- scene classification --- CNN --- capsule --- PrimaryCaps --- CapsNet --- High-resolution satellite imagery --- submesoscale --- spiral eddy --- cyanobacteria --- surface convergence --- western Baltic Sea

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 / 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 / 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search
-->