Search results: Found 25

Listing 1 - 10 of 25 << page
of 3
>>
Sort by
Quantitative Systems Biology for Engineering Organisms and Pathways

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198290 Year: Pages: 126 DOI: 10.3389/978-2-88919-829-0 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Studying organisms as a whole for potential metabolic(ally) engineering of organisms for production of (bio)chemicals is essential for industrial biotechnology. To this end, integrative analysis of different –omics measurements (transciptomics, proteomics, metabolomics, fluxomics) provides invaluable information. Combination of experimental top-down and bottom-up approaches with powerful analytical tools/techniques and mathematical modeling, namely (quantitative) systems biology, currently making the state of art of this discipline, is the only practice that would improve our understanding for the purpose. The use of high-throughput technologies induced the required development of many bioinformatics tools and mathematical methods for the integration of obtained data. Such research is significant since compiling information from different levels of a living system and connecting them is not an easy task. In particular, construction of dynamic models for product improvement has been one of the goals of many research groups. In this Research Topic, we summarize and bring a general review of the most recent and relevant contributions in quantitative systems biology applied in metabolic modeling perspective. We want to make special emphasis on the techniques that can be widely implemented in regular scientific laboratories and in those works that include theoretical presentations. With this Research Topic we discuss the importance of applying systems biology approaches for finding metabolic engineering targets for the efficient production of the desired biochemical integrating information from genomes and networks to industrial production. Examples and perspectives in the design of new industrially relevant chemicals, e.g. increased titer/productivity/yield of (bio)chemicals, are welcome. Addition to the founded examples, potential new techniques that would frontier the research will be part of this topic. The significance of multi ‘omics’ approaches to understand/uncover the pathogenesis/mechanisms of metabolic diseases is also one of the main topics.

Systems Biology of Transcription Regulation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199679 Year: Pages: 189 DOI: 10.3389/978-2-88919-967-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics --- Botany --- General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signaling pathways and ending up with the TF binding sites in the promoters and other regulatory regions. However, it is obvious that the TF regulation, also including the upstream processes, represents a modest portion of all processes leading to gene expression. For more comprehensive description of the gene regulation, we need a systematic and holistic view, which brings us to the importance of systems biology approaches.Advances in methodology, especially in high-throughput methods, result in an ever-growing mass of data, which in many cases is still waiting for appropriate consideration. Moreover, the accumulation of data is going faster than the development of algorithms for their systematic evaluation. Data and methods integration is indispensable for the acquiring a systematic as well as a systemic view. In addition to the huge amount of molecular or genetic components of a biological system, the even larger number of their interactions constitutes the enormous complexity of processes occurring in a living cell (organ, organism). In systems biology, these interactions are represented by networks. Transcriptional or, more generally, gene regulatory networks are being generated from experimental ChIPseq data, by reverse engineering from transcriptomics data, or from computational predictions of transcription factor (TF) – target gene relations. While transcriptional networks are now available for many biological systems, mathematical models to simulate their dynamic behavior have been successfully developed for metabolic and, to some extent, for signaling networks, but relatively rarely for gene regulatory networks. Systems biology approaches provide new perspectives that raise new questions. Some of them address methodological problems, others arise from the newly obtained understanding of the data. These open questions and problems are also a subject of this Research Topic.

Protein Interaction Networks in Health and Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199822 Year: Pages: 89 DOI: 10.3389/978-2-88919-982-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The identification and mapping of protein-protein interactions (PPIs) is a major goal in systems biology. Experimental data are currently produced in large scale using a variety of high-throughput assays in yeast or mammalian systems. Analysis of these data using computational tools leads to the construction of large protein interaction networks, which help researchers identify novel protein functions.However, our current view of protein interaction networks is still limited and there is an active field of research trying to further develop this concept to include important processes: the topology of interactions and their changes in real time, the effects of competition for binding to the same protein region, PPI variation due to alternative splicing or post-translational modifications, etc.In particular, a clinically relevant topic for development of the concept of protein interactions networks is the consideration of mutant isoforms, which may be responsible for a pathological condition. Mutations in proteins may result in loss of normal interactions and appearance of novel abnormal interactions that may affect a protein’s function and biological cycle.This Research Topic presents novel findings and recent achievements in the field of protein interaction networks with a focus on disease. Authors describe methods for the identification and quantification of PPIs, the annotation and analysis of networks, considering PPIs and protein complexes formed by mutant proteins associated with pathological conditions or genetic diseases.

Systems Biology and the Challenge of Deciphering the Metabolic Mechanisms Underlying Cancer

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453337 Year: Pages: 142 DOI: 10.3389/978-2-88945-333-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology --- Biology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Since the discovery of the Warburg effect in the 1920s cancer has been tightly associated with the genetic and metabolic state of the cell. One of the hallmarks of cancer is the alteration of the cellular metabolism in order to promote proliferation and undermine cellular defense mechanisms such as apoptosis or detection by the immune system. However, the strategies by which this is achieved in different cancers and sometimes even in different patients of the same cancer is very heterogeneous, which hinders the design of general treatment options.Recently, there has been an ongoing effort to study this phenomenon on a genomic scale in order to understand the causality underlying the disease. Hence, current “omics” technologies have contributed to identify and monitor different biological pieces at different biological levels, such as genes, proteins or metabolites. These technological capacities have provided us with vast amounts of clinical data where a single patient may often give rise to various tissue samples, each of them being characterized in detail by genomescale data on the sequence, expression, proteome and metabolome level. Data with such detail poses the imminent problem of extracting meaningful interpretations and translating them into specific treatment options. To this purpose, Systems Biology provides a set of promising computational tools in order to decipher the mechanisms driving a healthy cell’s metabolism into a cancerous one. However, this enterprise requires bridging the gap between large data resources, mathematical analysis and modeling specifically designed to work with the available data. This is by no means trivial and requires high levels of communication and adaptation between the experimental and theoretical side of research.

Evolution of Gene Regulatory Networks in Plant Development

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454075 Year: Pages: 252 DOI: 10.3389/978-2-88945-407-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

During their life cycle plants undergo a wide variety of morphological and developmental changes. Impinging these developmental processes there is a layer of gene, protein and metabolic networks that are responsible for the initiation of the correct developmental transitions at the right time of the year to ensure plant life success. New omic technologies are allowing the acquisition of massive amount of data to develop holistic and integrative analysis to understand complex processes. Among them, Microarray, Next-generation Sequencing (NGS) and Proteomics are providing enormous amount of data from different plant species and developmental stages, thus allowing the analysis of gene networks globally. Besides, the comparison of molecular networks from different species is providing information on their evolutionary history, shedding light on the origin of many key genes/proteins. Moreover, developmental processes are not only genetically programed but are also affected by internal and external signals. Metabolism, light, hormone action, temperature, biotic and abiotic stresses, etc. have a deep effect on developmental programs. The interface and interplay between these internal and external circuits with developmental programs can be unraveled through the integration of systematic experimentation with the computational analysis of the generated omics data (Molecular Systems Biology).This Research Topic intends to deepen in the different plant developmental pathways and how the corresponding gene networks evolved from a Molecular Systems Biology perspective. Global approaches for photoperiod, circadian clock and hormone regulated processes; pattern formation, phase-transitions, organ development, etc. will provide new insights on how plant complexity was built during evolution. Understanding the interface and interplay between different regulatory networks will also provide fundamental information on plant biology and focus on those traits that may be important for next-generation agriculture.

Genome Informatics 2009:Genome Informatics Series Vol. 22

Authors: --- --- --- --- et al.
Book Series: Genome Informatics Series ISBN: 9781848165786 Year: Pages: 228 DOI: 10.1142/p718 Language: ENGLISH
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2019-07-04 04:29:21

Loading...
Export citation

Choose an application

Abstract

This volume contains 17 peer-reviewed papers based on the presentations at the 9th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2009) held at the Life Science Engineering Building of Boston University from July 27 to 29, 2009. This workshop started in 2001 as a platform for doctoral students and young researchers to present and discuss their research results and approaches in bioinformatics and systems biology. It is part of a collaborative educational program involving leading institutions and leaders committed to the following institutions and programs:Boston University Graduate Program in BioinformaticsCharité – Universitätsmedizin BerlinFreie Universität BerlinGlobal COE Program — Center of Education and Research for Advanced Genome-Based Medicine, University of TokyoThe International Research Training Group (IRTG) Genomics and Systems Biology of Molecular NetworksInternational Research and Training Program on Bioinformatics and Systems Biology, Kyoto University Bioinformatics CenterMax-Delbrück Center for Molecular Medicine in BerlinMax Planck Institute for Molecular Genetics in BerlinMax Planck Institute of Molecular Plant Physiology in Potsdam

Genome Informatics 2009:Genome Informatics Series Vol. 23

Authors: --- ---
Book Series: Genome Informatics Series ISBN: 9781848165632 Year: Pages: 240 DOI: 10.1142/p715 Language: ENGLISH
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2019-07-04 04:35:35

Loading...
Export citation

Choose an application

Abstract

This volume contains papers presented at the 20th International Conference on Genome Informatics (GIW 2009) held at the Pacifico Yokohama, Japan from December 14 to 16, 2009. The GIW Series provides an international forum for the presentation and discussion of original research papers on all aspects of bioinformatics, computational biology and systems biology. Its scope includes biological sequence analysis, protein structure prediction, genetic regulatory networks, bioinformatic algorithms, comparative genomics, and biomolecular data integration and analysis. Boasting a history of 20 years, GIW is the longest-running international bioinformatics conference.A total of 18 contributed papers were selected for presentation at GIW 2009 and for inclusion in this book. In addition, this book contains abstracts from the five invited speakers: Sean Eddy (HHMI's Janelia Farm, USA), Minoru Kanehisa (Kyoto University, Japan), Sang Yup Lee (KAIST, Korea), Hideyuki Okano (Keio University, Japan) and Mark Ragan (University of Queensland, Australia).

Protein Phosphorylation in Health and Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199006 Year: Pages: 122 DOI: 10.3389/978-2-88919-900-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Protein phosphorylation is one of the most abundant reversible post-translational modifications in eukaryotes. It is involved in virtually all cellular processes by regulating protein function, localization and stability and by mediating protein-protein interactions. Furthermore, aberrant protein phosphorylation is implicated in the onset and progression of human diseases such as cancer and neurodegenerative disorders. In the last years, tens of thousands of in vivo phosphorylation events have been identified by large-scale quantitative phospho-proteomics experiment suggesting that a large fraction of the proteome might be regulated by phosphorylation. This data explosion is increasingly enabling the development of computational approaches, often combined with experimental validation, aiming at prioritizing phosphosites and assessing their functional relevance. Some computational approaches also address the inference of specificity determinants of protein kinases/phosphatases and the identification of phosphoresidue recognition domains. In this context, several challenging issues are still open regarding phosphorylation, including a better understanding of the interplay between phosphorylation and allosteric regulation, agents and mechanisms disrupting or promoting abnormal phosphorylation in diseases, the identification and modulation of novel phosphorylation inhibitors, and so forth. Furthermore, the determinants of kinase and phosphatase recognition and binding specificity are still unknown in several cases, as well as the impact of disease mutations on phosphorylation-mediated signaling. The articles included in this Research Topic illustrate the very diverse aspects of phosphorylation, ranging from structural changes induced by phosphorylation to the peculiarities of phosphosite evolution. Some also provide a glimpse into the huge complexity of phosphorylation networks and pathways in health and disease, and underscore that a deeper knowledge of such processes is essential to identify disease biomarkers, on one hand, and design more effective therapeutic strategies, on the other.

Plant Single Cell Type Systems Biology

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199488 Year: Pages: 149 DOI: 10.3389/978-2-88919-948-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The phenotype of a plant in response to a stress condition is the reflection of the molecular responses in different cell-types composing the plant. The multicellular complexity represents a challenge when accessing specific responses of each cell or cell type composing the plant. To overcome this difficulty and allow the clear characterization of the plant cell molecular mechanisms, the research community is now focusing on studying a single cell and single cell-types. The isolation of plant single cells is limited by the cell wall that confers the rigidity of the plant and its overall structure. Various methods have been developed for isolating plant cells (e.g. laser capture microdissection; cell sorting of Green Fluorescent Protein (GFP)-tagged protoplasts, differential protoplastization of cells such as guard cells, isolation of easily accessible cell types such as cotton fiber, pollen cells, trichomes and root hair cells). The development of these innovative approaches to isolate single plant cells or cell-types combined with the application of sensitive and high-throughput technologies allows a better analysis of the developmental processes and response to environmental stresses. Ultimately, single plant cell and cell-type biology will lead to establishment of more reliable and accurate -molecular regulatory networks at the resolution of basic life unit. The goal of this Research Topic is to cover new technological and biological advances in the study of plant single cell, cell-type and systems biology.

Advances in Systems Immunology and Cancer

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193134 Year: Pages: 108 DOI: 10.3389/978-2-88919-313-4 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Biology --- Biotechnology --- General and Civil Engineering --- Psychiatry --- Medicine (General) --- Physiology --- Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Aims and Scope: The Research Topic is designed to feature the latest innovative and leading-edge research, reviews and opinions on the study of complex and dynamic processes related to the mammalian immune system and cancer. All papers were meticulously selected to present our readers the multidisciplinary approach to tackle the existing challenges faced in these important fields. From high throughput experimental methodologies to computational and theoretical approaches, the articles are intended to introduce physicists, chemists, computer scientists, biologists and immunologists the idea of systems biology approach to the understanding of mammalian immune system and cancer processes. Attention was given to works that developed more effective approaches to the treatment of proinflammatory disease and cancer. The strong interdisciplinary focus will discuss biological systems at the level from a few molecules to the entire organism. Specific focus domain includes: Innate and adaptive immunity, cancer and cancer stem cell, genomic, proteomic and metabolic analysis, imaging, biophysics of immune and cancer response, computational modeling, non-linear analysis, statistical analysis, translational and disease models Types of articles: Viewpoint, commentaries, research letters, research articles, review and methodologies

Listing 1 - 10 of 25 << page
of 3
>>
Sort by
Narrow your search