Search results: Found 3

Listing 1 - 3 of 3
Sort by
Processing-Structure-Property Relationships in Metals

Authors: ---
ISBN: 9783039217700 / 9783039217717 Year: Pages: 240 DOI: 10.3390/books978-3-03921-771-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

titanium composites --- in situ secondary phases --- microstructure --- inductive hot pressing --- intermetallic --- bainite rail --- tempering --- retained austenite --- tensile property --- impact toughness --- cryorolling --- reduction --- ultrafine grain --- secondary recrystallization --- high strength --- microstructure inhomogeneity --- non-monotonic simple shear strains --- shear strain reversal --- severe plastic deformation --- texture inhomogeneity --- tensile properties --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- ultra-fine grain --- aging treatment --- precipitation behavior --- mechanical property --- multimodal --- AZ91 alloy --- equal channel angular pressing --- aging --- high pressure die casting --- aluminum alloy --- prediction model --- process monitoring --- static mechanical behavior --- fracture surface --- microstructure. --- casting --- Al 6061 alloys --- shrinkage --- porosity --- steering knuckles --- Al alloys --- warm working --- mechanical properties --- dental materials --- metal posts --- computer-aided design (CAD) --- image analysis --- mechanical properties --- finite element analysis --- additive manufacturing --- Al alloys --- wear --- cavitation erosion --- SEM --- microstructure --- high speed steel --- nanostructured coatings --- thin films --- FEGSEM --- tribology --- Nb tube --- caliber-rolling --- grain boundaries --- texture --- electron backscatter diffraction --- damping --- aluminum film --- grain boundary --- anelasticity --- thin aluminum sheet --- alloys --- aeronautic applications --- mechanical properties --- corrosion resistance --- EBM --- SEBM --- macro-instrumented indentation test --- property-microstructure-process relationship --- mechanical properties --- indentation hardness --- indentation modulus --- tensile properties --- Ti-6Al-4V alloy --- ?-platelet thickness --- columnar microstructure --- n/a

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 / 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Dissimilar Metal Welding

Authors: ---
ISBN: 9783039219544 / 9783039219551 Year: Pages: 288 DOI: 10.3390/books978-3-03921-955-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The combination of distinct materials is a key issue in modern industry, whereas the driving concept is to design parts with the right material in the right place. In this framework, a great deal of attention is directed towards dissimilar welding and joining technologies. In the automotive sector, for instance, the concept of “tailored blanks”, introduced in the last decade, has further highlighted the necessity to weld dissimilar materials. As far as the aeronautic field is concerned, most structures are built combining very different materials and alloys, in order to match lightweight and structural performance requirements. In this framework, the application of fusion welding techniques, namely, tungsten inert gas or laser welding, is quite challenging due to the difference in physical properties, in particular the melting point, between adjoining materials. On the other hand, solid-state welding methods, such as the friction stir welding as well as linear friction welding processes, have already proved to be capable of manufacturing sound Al-Cu, Al-Ti, Al-SS, and Al-Mg joints, to cite but a few. Recently, promising results have also been obtained using hybrid methods. Considering the novelty of the topic, many relevant issues are still open, and many research groups are continuously publishing valuable results. The aim of this book is to finalize the latest contributions on this topic.

Keywords

dissimilar joints --- friction stir welding --- microstructure --- mechanical properties --- local strength mismatch --- dissimilar metal welded joint --- fracture resistance --- crack growth path --- optimal design --- laser beam welding --- spatial beam oscillation --- dissimilar metals --- aluminum --- copper --- friction stir welding --- aluminum --- copper --- cross-section adjustment --- mechanical properties --- electrical properties --- dissimilar weld --- ageing --- tensile properties --- hardness --- failure mode --- dissimilar metal welding --- Inconel 625 --- AISI 316L --- microstructure --- filler metals --- friction stir spot welding --- friction stir spot brazing --- joining area --- fracture load --- Al/steel dissimilar materials --- friction stir welding --- interface --- intermetallic compounds --- dual-beam laser welding --- steel/Al joint --- side-by-side configuration --- tensile resistance --- EBSD phase mapping --- pulsed Nd:YAG laser beam welding --- interfacial crack initiation --- dissimilar Ti6Al4V/AA6060 lap joint --- phase potential --- laser welding --- pulsed Nd:YAG laser --- DP1000 steel --- 1050 aluminum alloy --- dissimilar materials welding --- steel/aluminum joint --- Ag-Cu-Zn --- Rare earth --- aging treatment --- microstructure --- mechanical properties --- aluminum --- dissimilar --- friction stir welding --- FSW --- hardness --- microstructure --- tensile --- magnetic pulse welding --- dissimilar metal welding --- solid state welding --- welding window --- cloud of particles --- jet --- surface activation --- welding-brazing --- arc assisted laser method --- aluminum-steel butt joint --- mechanical properties --- DeltaSpot welding --- spooling process tape --- aluminum alloy --- dissimilar metal welding --- lobe curve --- electromagnetic pulse welding --- tubular joints --- internal supports --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

eng (3)


Year
From To Submit

2019 (3)