Search results: Found 2

Listing 1 - 2 of 2
Sort by
Thermal and Electro-thermal System Simulation

Authors: ---
ISBN: 9783039217366 9783039217373 Year: Pages: 222 DOI: 10.3390/books978-3-03921-737-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

With increasing power levels and power densities in electronics systems, thermal issues are becoming more and more critical. The elevated temperatures result in changing electrical system parameters, changing the operation of devices, and sometimes even the destruction of devices. To prevent this, the thermal behavior has to be considered in the design phase. This can be done with thermal end electro-thermal design and simulation tools. This Special Issue of Energies, edited by two well-known experts of the field, Prof. Marta Rencz, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects twelve papers carefully selected for the representation of the latest results in thermal and electro-thermal system simulation. These contributions present a good survey of the latest results in one of the most topical areas in the field of electronics: The thermal and electro-thermal simulation of electronic components and systems. Several papers of this issue are extended versions of papers presented at the THERMINIC 2018 Workshop, held in Stockholm in the fall of 2018. The papers presented here deal with modeling and simulation of state-of-the-art applications that are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. Contributions covered the thermal simulation of electronic packages, electro-thermal advanced modeling in power electronics, multi-physics modeling and simulation of LEDs, and the characterization of interface materials, among other subjects.

Failure Mechanisms in Alloys

Author:
ISBN: 9783039282760 9783039282777 Year: Pages: 476 DOI: 10.3390/books978-3-03928-277-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The era of lean production and excellence in manufacturing, advancing with sustainable development, demands the rational utilization of raw materials and energy resources, adopting cleaner and environmentally-friendly industrial processes. In view of the new industrial revolution, through digital transformation, the exploitation of smart and sophisticated materials systems, the need of minimizing scrap and increasing efficiency, reliability and lifetime and, on the other hand, the pursuit of fuel economy and limitation of carbon footprint, are necessary conditions for the imminent growth in a highly competitive economy. Failure analysis is an interdisciplinary scientific topic, reflecting the opinions and interpretations coming from a systematic evidence-gathering procedure, embracing various important sectors, imparting knowledge, and substantiating improvement practices. The deep understanding of material/component role (e.g., rotating shaft, extrusion die, gas pipeline) and properties will be of central importance for fitness for purpose in certain industrial processes and applications. Finally, it is hoped and strongly believed that the accumulation of additional knowledge in the field of failure mechanisms and the adoption of the principles, philosophy, and deep understanding of failure analysis process approach will strongly promote the learning concept, as a continuously evolving process leading to personal and social progress and prosperity.

Keywords

impingement --- erosion corrosion --- API 5L-X65 --- flow loop --- wear scar --- creep fatigue --- crack growth --- grain boundary --- hydrogen-assisted cracking --- corrosion --- SOHIC --- cleavage fracture --- cold-working process --- surface-cracking process --- impact toughness --- strength --- low temperatures --- austenitic stainless steels --- pipeline steel --- tensile stress --- corrosion --- potentiodynamic polarization --- EIS --- brass extrusion --- CFD simulation --- extrusion failures --- plastic deformation processing --- finite element analysis --- inverse modeling --- post-necking hardening --- biaxial tensile test --- elevated temperature --- reliability design --- helix upper dispenser --- fracture --- parametric accelerated life testing --- faulty designs --- metal components --- fracture mechanisms --- fractography --- fracture mechanics --- quality improvement --- finite element modeling --- nanocrystalline materials --- elastic moduli --- yield strength --- cast duplex stainless steels --- thermal aging --- tensile deformation --- spinodal decomposition --- smooth particle hydrodynamics --- Titanium alloy machining --- numerical simulation --- cutting forces --- chip formation --- fracture --- iterative FEM Method --- GISSMO Model --- softening --- macroscopic strength criterion --- isotropic metals --- fracture plane --- linear Mohr–Coulomb criterion --- failure mechanism --- W-30Cu --- microstructure homogeneity --- dynamic compression strength --- ductility --- failure mechanism --- slow-rate machining --- chip formation --- shape --- temperature --- microhardness HV --- creep --- steam reforming --- carbides --- G-phase --- aging --- cast reformer tubes --- hot stamping --- press hardening --- austenitizing furnace --- high temperature fatigue --- thermal distortion --- conveying system --- refractory steels --- furnace component failure --- ductile irons --- tensile tests --- mechanical properties --- constitutive equations --- quality assessment --- shear angle --- chip root --- shape --- built-up edge --- slow-rate machining --- convection tubes --- AISI 304 stainless steel --- failure analysis --- sensitization --- bake hardening --- dent resistance --- failure study --- polynomial regression --- yield strength --- automotive steels --- reformer tubes --- HP-Mod --- failure analysis --- creep --- surface modification techniques --- degradation of protective layers --- lubrication --- nitrocarburizing --- hardfacings --- thermal-sprayed coatings --- finite element analysis --- forward slip prediction --- strip marking method --- multilinear regression --- micro flexible rolling --- thickness transition area --- 3D Voronoi modelling --- automotive --- 6063 Alloy --- EBSD --- bendability --- fractography --- modeling --- texture --- tribological properties --- wear --- surface treatment --- self-equalizing bearing --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2020 (1)

2019 (1)