Search results: Found 6

Listing 1 - 6 of 6
Sort by
Advanced Memristor Modeling: Memristor Circuits and Networks

Author:
ISBN: 9783038971047/9783038971030 Year: Pages: 172 DOI: doi.org/10.3390/books978-3-03897-103-0 Language: en
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-05-22 16:48:48
License:

Loading...
Export citation

Choose an application

Abstract

The investigation of new memory schemes, neural networks, computer systems, and many other improved electronic devices is very important for the future generation’s electronic circuits and for their widespread application in all the areas of industry. In this respect, the analysis of new efficient and advanced electronic elements and circuits is an essential field of highly developed electrical and electronic engineering. The resistance-switching phenomenon, observed in many amorphous oxides, has been investigated since 1970 and is a promising technology for constructing new electronic memories. It has been established that such oxide materials have the ability for changing their conductance in accordance with the applied voltage, and for memorizing their state for long-time interval. Similar behaviour has been predicted for the memristor element by Leon Chua in 1971. The memristor is proposed in accordance with symmetry considerations and the relationships between the four basic electric quantities—electric current i, voltage v, charge q, and magnetic flux Ψ. The memristor is an essential passive one-port element together with the resistor, inductor, and capacitor. The Williams HP research group has made a link between resistive switching devices and the memristor proposed by Chua. A number of scientific papers related to memristors and memristor devices have been issued, and several memristor models have been proposed. The memristor is a highly nonlinear component. It relates the electric charge q and the flux linkage, expressed as a time integral of the voltage. The memristor element has the important capability for remembering the electric charge passed through its cross-section and its respective resistance, when the electrical signals are switched off. Due to its nano-scale dimensions, non-volatility, and memorizing properties, the memristor is a sound potential candidate for application in computer high-density memories, artificial neural networks, and many other electronic devices.

Application of Photoactive Nanomaterials in Degradation of Pollutants

Author:
ISBN: 9783039213818 / 9783039213825 Year: Pages: 134 DOI: 10.3390/books978-3-03921-382-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Photoactive nanomaterials have been receiving increasing attention due to their potential application in the light-driven degradation of water and gas-phase pollutants. However, to exploit the great potential of photoactive materials and access their properties requires fine-tuning of their size/shape-dependent chemical–physical properties, and on the ability to integrate them in photoreactors or to deposit them onto large surfaces. Therefore, the synthetic approach as well as post-synthesis manipulation could strongly affect the final photocatalytic properties of the nanomaterial. The aim of the present Special Issue is to report on the most recent progress towards the application of photoactive nanomaterials and nanomaterial-based coatings in pollutant degradation, paying particular attention to cases close to real application: scalable synthetic approaches to nanocatalysts, preparation of nanocatalyst-based coatings, degradation of real pollutants and bacterial inactivation, and application in building materials.

Multifunctional Oxide-Based Materials: From Synthesis to Application

Authors: ---
ISBN: 9783039213979 / 9783039213986 Year: Pages: 202 DOI: 10.3390/books978-3-03921-398-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Novel Photoactive Materials

Author:
ISBN: 9783038976509 Year: Pages: 166 DOI: 10.3390/books978-3-03897-651-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-03-05 14:29:32
License:

Loading...
Export citation

Choose an application

Abstract

Photoactivity represents the ability of a material, generally speaking a semiconductor, to become active when interacting with light. It can be declined in many ways, and several functionalities arising from this behavior of materials can be exploited, all leading to positive repercussions on our environment. There are several classes of effects of photoactivity, all of which have been deeply investigated in the last few decades, allowing to develop more and more efficient materials and devices. All of them share a common point, that is, the interaction of a material with light, although many different materials are taken into account depending on the effect desired—from elemental semiconductors like silicon, to more complex compounds like CdTe or GaAs, to metal oxides like TiO2 and ZnO. Given the broadness of the field, a huge number of works fall within this topic, and new areas of discovery are constantly explored. The special issue “Novel Photoactive Materials” has been proposed as a means to present recent developments in the field, and for this reason the articles included touch different aspects of photoactivity, from photocatalysis to photovoltaics to light emitting materials.

Titanium Dioxide Photocatalysis

Authors: ---
ISBN: 9783038976943 / 9783038976950 Year: Pages: 208 DOI: 10.3390/books978-3-03897-695-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splitting), and in Carbon Capture and Utilization (CCU) processes by CO2 photoreduction. The eleven articles, among them three reviews, in this book cover recent results and research trends of various aspects of titanium dioxide photocatalysis, with the chief aim of improving the final efficiency of TiO2-based materials. Strategies include doping, metal co-catalyst deposition, and the realization of composites with plasmonic materials, other semiconductors, and graphene. Photocatalysts with high efficiency and selectivity can be also obtained by controlling the precise crystal shape (and homogeneous size) and the organization in superstructures from ultrathin films to hierarchical nanostructures. Finally, the theoretical modeling of TiO2 nanoparticles is discussed and highlighted. The range of topics addressed in this book will stimulate the reader’s interest as well as provide a valuable source of information for researchers in academia and industry.

Green Synthesis of Nanomaterials

Author:
ISBN: 9783039217861 / 9783039217878 Year: Pages: 224 DOI: 10.3390/books978-3-03921-787-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity.

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

eng (5)

en (1)


Year
From To Submit

2019 (6)