Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Novel Pharmacological Inhibitors for Bacterial Protein Toxins

Author:
ISBN: 9783038424314 9783038424307 Year: Pages: VI, 118 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health --- Biology
Added to DOAB on : 2017-06-13 09:39:34
License:

Loading...
Export citation

Choose an application

Abstract

Many medically relevant bacteria cause severe human and animal diseases because they produce and release protein toxins that target mammalian cells. Because the toxin-induced cell damage is the reason for the clinical symptoms, the targeted pharmacological inhibition of the cytotoxic mode of action of bacterial toxins should prevent or cure the respective toxin-associated disease. Toxin inhibitors might be beneficial when the toxin acts in the absence of the producing bacteria (e.g., food poisoning), but also in combination with antibiotics in infectious diseases when the toxin-producing bacteria are present. The focus of this Special Issue of Toxins is on the development and characterization of novel inhibitors against bacterial toxins, e.g., toxin neutralizing antibodies, peptides or small compounds, as well as toxin pore blockers, which interfere with bacterial toxins and thereby protect cells from intoxication.

Toxicity of Pesticides on Health and Environment

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456444 Year: Pages: 124 DOI: 10.3389/978-2-88945-644-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Public policy is regularly shaken by health crises or unexpected discoveries; future directions in toxicology assessment are therefore urgently needed. Convergent evidences suggest endocrine or nervous disrupting effects of pesticides, as well as effects on wildlife and the environment. These effects are amplified by the use of surfactants and/or combinations of different active principles. The usual concepts of regulatory toxicology are challenged by endocrine, nervous or immune disruption, or epigenetic effects. Indeed, most pollutants alter cell-cell communication systems to promote chronic diseases. They may accumulate in the food chain. Mixtures effects with other pollutants may change their bioavailability and their toxicity. The lack of scientific knowledge in these matters has large costs for public health. This Research Topic focuses on the toxic effects of pesticides associated with large scale cultivation of genetically modified (GM) plants.

Sensors for Food Safety and Quality

ISBN: 9783038421993 9783038422006 Year: Pages: 334 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-06-07 11:19:06
License:

Loading...
Export citation

Choose an application

Abstract

Harm and Benefit of Plant and Fungal Secondary Metabolites in Food Animal Production

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455065 Year: Pages: 100 DOI: 10.3389/978-2-88945-506-5 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Animal Sciences --- Nutrition and Food Sciences
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Livestock species are either herbivores or omnivores that are maintained largely on plant-based diets. We have long appreciated the importance of understanding dietary plants from both nutritional and agronomic perspectives. However, it is increasingly clear that the fungi, bacteria and other microorganisms that live in the plants and animals are also significant factors in the ecology of agricultural animals. Many of the effects exerted on animals by dietary plants are attributable to secondary metabolites produced by the plants themselves or commensal microorganisms. Some fungal and plant secondary metabolites have multiple biological effects. We must be careful not to categorize a plant as strictly beneficial or harmful. Furthermore, we must be careful not to categorize even a particular plant or fungal compound as strictly beneficial or harmful. Rather, the harm or benefit of secondary metabolites are often dependent on the metabolic status of the animal, the interaction with other dietary factors including other secondary metabolites, and the dose received through the diet. This collection examines a range of agriculturally important plant and fungal products including essential oils, alkaloids, isoflavones and nitrates.

Bacterial Exotoxins: How bacteria fight the immune system

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199914 Year: Pages: 190 DOI: 10.3389/978-2-88919-991-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General) --- Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The goal of this research topic was to gather current knowledge on the interaction of bacterial exotoxins and effector proteins with the host immune system. The following 16 research and review articles in this special issue describe mechanisms of immune modification and evasion and provide an overview over the complexity of bacterial toxin interaction with different cells of the immune system.

Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts

Authors: ---
ISBN: 9783039213634 / 9783039213641 Year: Pages: 376 DOI: 10.3390/books978-3-03921-364-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Several species of Dinophysis produce one or two groups of lipophilic toxins: okadaic acid (OA) and its derivatives; or the dinophysistoxins (DTXs) (also known as diarrhetic shellfish poisons or DSP toxins) and pectenotoxins (PTXs). DSP toxins are potent inhibitors of protein phosphatases, causing gastrointestinal intoxication in consumers of contaminated seafood. Forty years after the identification of Dinophysis as the causative agent of DSP in Japan, contamination of filter feeding shellfish exposed to Dinophysis blooms is recognized as a problem worldwide. DSP events affect public health and cause considerable losses to the shellfish industry. Costly monitoring programs are implemented in regions with relevant shellfish production to prevent these socioeconomic impacts. Harvest closures are enforced whenever toxin levels exceed regulatory limits (RLs). Dinophysis species are kleptoplastidic dinoflagellates; they feed on ciliates (Mesodinium genus) that have previously acquired plastids from cryptophycean (genera Teleaulax, Plagioselmis, and Geminigera) nanoflagellates. The interactions of Dinophysis with different prey regulate their growth and toxin production. When Dinophysis cells are ingested by shellfish, their toxins are partially biotransformed and bioaccumulated, rendering the shellfish unsuitable for human consumption. DSP toxins may also affect shellfish metabolism. This book covers diverse aspects of the abovementioned topics—from the laboratory culture of Dinophysis and the kinetics of uptake, transformation, and depuration of DSP toxins in shellfish to Dinophysis population dynamics, the monitoring and regulation of DSP toxins, and their impact on the shellfish industry in some of the aquaculture regions that are traditionally most affected, namely, northeastern Japan, western Europe, southern Chile, and New Zealand.

Keywords

harmful algal bloom --- Diarrheic Shellfish Poisoning --- okadaic acid --- toxin accumulation --- toxin vectors --- trophic transfer --- Brazil --- diarrhetic shellfish toxins (DST) --- Mytilus galloprovincialis --- DST accumulation --- DST esterification --- suspended particulate matter (SPM) --- harmful algal blooms --- okadaic acid --- Argopecten irradians --- transcriptomic response --- deep sequencing --- pectenotoxins --- surf clam --- accumulation --- biotransformation --- depuration --- diarrhetic shellfish toxins --- accumulation --- dinophysistoxin --- Japanese scallop --- dinophysis --- LC/MS/MS --- statistical analysis --- Dinophysis --- HAB monitoring --- DSP toxins --- aquaculture --- shellfish toxicity --- human health --- time-series --- seasonality --- Scotland --- DSP toxins --- bivalves --- mussel --- resistance --- RNA-Seq --- qPCR --- metabolism --- defense --- immunity --- DSP toxins --- pectenotoxins --- Dinophysis acuminata --- Mesodinium rubrum --- bacterial community --- high throughput sequencing --- diarrhetic shellfish toxins --- Dinophysis --- wild harvest --- bivalve shellfish --- pipis (Plebidonax deltoides) --- Sydney rock oyster (Saccostrea glomerata) --- okadaic acid --- pectenotoxins --- Dinophysis toxins --- accumulation --- digestion --- biotransformation --- compartmentalization --- depuration --- kinetics --- Dinophysis --- diarrhetic shellfish poisoning --- marine toxins --- pectenotoxin --- okadaic acid --- dinophysistoxin --- okadaic acid --- pectenotoxins --- Dinophysis --- D. acuminata-complex --- D. caudata --- Argopecten purpuratus --- Dinophysis --- Mesodinium --- cryptophytes --- predator-prey preferences --- Diarrhetic Shellfish Toxins (DST) --- pectenotoxins (PTXs) --- mixotrophic cultures --- mass culture conditions --- Dinophysis acuminata --- Protoceratium reticulatum --- Reloncaví Fjord --- OMI analysis --- WitOMI analysis --- Mesodinium cf. rubrum --- El Niño Southern Oscillation --- Southern Annual Mode --- Dinophysis acuta --- Dinophysis acuminata --- DSP --- physical–biological interactions --- niche partitioning --- climatic anomaly --- Dinophysis acuminata --- Mesodinium rubrum --- lysate --- organic matter --- diarrhetic shellfish poisoning --- okadaic acid --- dinophysistoxin --- pectenotoxins --- dinophysis --- DSP --- toxins --- OA --- DTX-2 --- PTXs --- Dinophysis acuminata --- dinophysistoxins --- pectenotoxins --- Port Underwood --- New Zealand --- Dinophysis --- Diarrhetic shellfish toxins --- marine biotoxins --- blooms --- n/a

Cellular Entry of Binary and Pore-Forming Bacterial Toxins

Author:
ISBN: 9783038427049 9783038427032 Year: Pages: 128 DOI: 10.3390/books978-3-03842-703-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-02-08 13:26:54
License:

Loading...
Export citation

Choose an application

Abstract

Bridging cellular membranes is a key step in the pathogenic action of both binary and pore-forming bacterial toxins. The former use their translocation domains, containing various structural motifs, to ensure efficient delivery of the toxic component into the host cell, while the latter act on the cellular membrane itself. In either case, the integrity of the membrane is compromised via targeted protein–lipid and protein–protein interactions triggered by specific signals, such as proteolytic cleavage or endosomal acidification.This Special Issue presents recent advances in characterizing functional, structural and thermodynamic aspects of the conformational switching and membrane interactions involved in the cellular entry of bacterial protein toxins. Deciphering the physicochemical principles underlying these processes is also a prerequisite for the use of protein engineering to develop toxin-based molecular vehicles capable of targeted delivery of therapeutic agents to tumors and other diseased tissues.

Marine Compounds and Cancer

Authors: ---
ISBN: 9783038427650 9783038427667 Year: Pages: VI, 112 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2018-06-26 13:37:12
License:

Loading...
Export citation

Choose an application

Abstract

In Western countries, cancer is among the most frequent causes of death. Despite striking advances in cancer therapy, especially by the so called “targeted agents”, there is still an urgent need for new drugs in oncology. Hope comes from the marine environment, which is a rich source of natural compounds showing anti-cancer activity. To date, four marine cytotoxic substances, namely cytarabine, trabectidine, eribulin, and monomethyl auristatin E (as a drug-antibody conjugate named vedotin) have made it into clinical routine. Many more are in all phases of clinical testing, and a plethora of substances has already been examined for in vitro and in vivo activity.Interestingly, more and more precise research tools allow the dissection of the molecular mode of action of these cytotoxic substances, thereby uncovering the specific drug targets in cancer cells. This development will blur the edges between “targeted” and “untargeted” therapy, and will hopefully lead to a more directed use of cancer medicine (based on a molecular rationale of activity) in the future.This Topical Collection will cover the whole scope from agents with cancer-preventive activity, to novel and previously characterized compounds with anti-cancer activity, both in vitro and in vivo, and the latest status of clinical development from drug trials. Of note, compounds possessing pro-carcinogenic activity or mediating cancer cell survival are also within the scope of this Topical Collection. In addition, a special focus will be placed on current shortfalls and possible strategies to overcome obstacles in the area of marine anti-cancer drug development.

Toxins in Drug Discovery and Pharmacology

Author:
ISBN: 9783038428619 9783038428626 Year: Pages: XII, 304 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health
Added to DOAB on : 2018-05-04 11:37:49
License:

Loading...
Export citation

Choose an application

Abstract

Venoms from marine and terrestrial animals (cone snails, scorpions, spiders, snakes, centipedes, cnidarian, etc.) can be seen as untapped cocktails of biologically active compounds that are being increasingly recognized as a new emerging source of peptide-based therapeutics. Venomous animals are considered to be specialized predators that have evolved the most sophisticated peptide chemistry and neuropharmacology for their own biological purposes by producing venoms that contain a structural and functional diversity of neurotoxins. These neurotoxins appear to be highly selective ligands for a wide range of ion channels and receptors. Therefore, they represent interesting lead compounds for the development of analgesics, anti-cancer drugs, drugs for neurological disorders such as multiple sclerosis, Parkinson' s disease, Alzheimer' s disease, and other therapeutics.This Special Issue of Toxins aims to provide a comprehensive look at toxins and toxin-inspired leads and will focus on the mechanisms of action, structure–function relationships, and evolution of pharmacologically interesting venom components, including the most recent developments related to the emergence of venoms as an underutilized source of highly evolved bioactive peptides with clinical potential.

Fungal Pathogenesis in Humans: The Growing Threat

Author:
ISBN: 9783038979005 / 9783038979012 Year: Pages: 232 DOI: 10.3390/books978-3-03897-901-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Cancer survival rates and successful organ transplantation in patients continues to increase due to improvements in early diagnosis and treatments. Since immuno-suppressive therapies are frequently used, the mortality rate due to secondary infections has become an ever-increasing problem. Opportunistic fungal infections are probably the deadliest threat to these patients due to their difficult early diagnosis, the limited effect of antifungal drugs and the appearance of resistances. In recent years, a considerable effort has been devoted to investigating the role of many virulence traits in the pathogenic outcome of fungal infections. New virulence factors (hypoxia adaptation, CO2 sensing, pH regulation, micronutrient acquisition, secondary metabolites, immunity regulators, etc.) have been reported and their molecular mechanisms of action are being thoroughly investigated. The recent application of gene-editing technologies such as CRISPr-Cas9, has opened a whole new window to the discovery of new fungal virulence factors. Accurate fungal genotyping, Next Generation Sequencing and RNAseq approaches will undoubtedly provide new clues to interpret the plethora of molecular interactions controlling these complex systems. Unraveling their intimate regulatory details will provide insights for a more target-focused search or a rational design of more specific antifungal agents. This Special Issue is show significant discoveries, proofs of concept of new theories or relevant observations in fungal pathogenesis and its regulation.

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (12)

Frontiers Media SA (3)


License

CC by-nc-nd (11)

CC by (4)


Language

english (10)

eng (5)


Year
From To Submit

2019 (5)

2018 (5)

2017 (1)

2016 (2)

2015 (2)